Chapter 9

KLYSTRONS

We have seen in Chapter 7 the deleterious effects that occur in con-
ventional triodes and tetrodes as the signal frequency is increased. The
factors degrading gain-bandwidth product and power output in these tubes
may be divided into two categories:

1. Circuit Factors

These include lead inductance, stray capacitance, and power losses
due to radiation, dielectric loss factor, and resistance.

2. Transit-Time Effects
‘These effects occur because of the finite time electrons take to travel
between electrodes.

The losses due to circuit factors can be reduced by a judicious use of the
microwave components discussed in the preceding chapter. On the other
hand, one encounters certain fundamental difficulties in trying to mini-
mize transit-time effects. In the triode and the tetrode, it is the cathode-
to-grid transit time which is the real culprit degrading the high-frequency
gain and efficiency. One can decrease this transit time by decreasing the
cathode-to-grid spacing. This approach has been used successfully in the
Western Electric 416B triode, described in Section 7.4. But as one can see
from the dimensions of this tube, as given in Section 7.4, it is unlikely
that the operating frequency could be extended much higher by further
reduction of electrode spacings. Accordingly, one must seek other means
for modulating the electron beams in tubes operating at high microwave
frequencies.

In the present chapter we shall describe two microwave tubes which
make use of a second type of modulation called velocity modulation. Veloc-
ity modulation is obtained by impressing a small ac component of velocity
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on a dc electron beam. This can be done by allowing the beam to pass
through two grids between which there is applied a small ac voltage. If
the grids are spaced very close together, equal numbers of electrons emerge
from the grids in equal intervals of time, but the velocity of the electrons
has a small ac component. Such a beam is said to be velocity modulated.
As the electrons travel away from the grids, the faster electrons move away
from the slower electrons behind them and tend to overtake the slower
electrons ahead of them. The axial density of electrons is therefore no
longer uniform, and the beam current passing a point some distance from
the grids has an ac component. In view of this, it is frequently said that
the velocity modulation imparted to the beam when it passed through the
grids gives rise to current modulation farther along the beam.
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Figc. 9-1 Applegate diagram showing representative electron trajectories. The slope

of each trajectory is proportional to the electron velocity. Velocity modulation is

produced at the gap by the changing gap voltage. This results in density modulation
beyond the gap.

The velocity modulation is illustrated in Figure 9-1, known as an Apple-
gate diagram. In this figure, plots of distance vs. time are given for a num-
ber of representative electrons (24 per cycle). The effects of space-charge
forces are neglected in drawing the figure. The electrons leave the grids
spaced uniformly in time, corresponding to the lack of current modulation
at this point, However, each electron has a slightly different velocity,
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depending on the instantaneous rf voltage between the grids when the
electron passed through the grids. The instantaneous voltage between the
grids is indicated on the figure. The slope of a trajectory is proportional
to the electron velocity. Because of the difference in slopes, many of the
trajectories converge so as to form electron bunches at some distance from
the grids. We note that the bunches tend to form about an electron which
goes through the grids when the voltage is zero and increasing. Similarly,
the electrons tend to move away from an electron which goes through the
grids when the voltage is zero and decreasing; this electron locates what is
termed the antibunch.

If the ac voltage applied between the grids is of a very high frequency,
the distance along the beam between maxima and minima in velocity will,
of course, be very short. This means that appreciable density variations
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Fic. 9-2 Two-cavity klystron ampliﬁer.

will appear after the electrons have traveled a relatively short distance
from the grids. Velocity modulation, therefore, lends itself particularly to
high-frequency tubes. The two velocity modulated tubes described in the
present chapter, the klystron amplifier and the reflex oscillator, are gen-
erally designed for operation at frequencies above 200 Mc. Reflex klystron
oscillators have been built which give useful output at frequencies greater
than 100,000 Me, or 100 Ge.

In both these tube types the beam passes through grids that are an in-
tegral part of a resonant cavity. If the cavity is excited, the voltage devel-
oped across the cavity, and hence between the grids, imparts the velocity
modulation to the beam. Power is extracted from the beam in the case of
the klystron amplifier by allowing the beam to pass through a second
resonant cavity. The cavity is excited by the induced currents associated
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with the beam just as in the case of an external resonant circuit connected
between a pair of grids. In the reflex oscillator the beam is caused to return
through the modulating cavity with the right phase so that it adds to the
excitation energy of the cavity.

Figure 9-2 illustrates a two-cavity klystron amplifier. In this particular
example the rf signal is coupled into the input cavity by means of a coaxial
cable. The output cavity is coupled to the load by means of a waveguide,
taking advantage of the lower attenuation inherent in waveguide.

The electron beam is produced by an electron gun of the type shown in
Figure 4.5-1(a). This is a convergent Pierce gun which produces a small
diameter beam from a cathode of much larger diameter. Thus, much higher
beam current densities are available for a given cathode electron-emission
density than in a triode or tetrode. This allows a large increase in the beam
power passing through electrode gaps of a fixed area and capacitance and
hence a large increase in the gain-bandwidth product which can be achieved
with such a tube.- The klystron is usually operated with the cathode at a
negative potential and the other electrodes grounded, for reasons of con-
venience and safety.

Since the electrons must travel a considerable distance, the beam is
prevented from spreading radially, due to the space charge repulsion, by
applying an axial dc magnetic field. This field is provided by a permanent
magnet or solenoid, as discussed in Section 3.4.

After passing through the output cavity, the beam strikes a collector
electrode. The function of the collector electrode could be performed by
replacing the second grid of the output cavity with a solid piece of metal.
However, having a separate electron collector has several advantages.
First, the collector can ge made as large as is desired in order to collect the
beam at a lower power density, thus minimizing localized heating. If the
collector were part of the rf circuit, its size would be limited by the maxi-
mum gap capacitance consistent with good high-frequency performance.
Second, by having a separate collector, its potential can be reduced con-
siderably below the beam potential in the rf interaction region, thus re-
ducing the power dissipated in the collector and increasing the overall effi-
ciency of the device. It should be clear that the electron beam does not
extract energy from any dc power supply unless the electrons are actually
collected by an electrode connected to that power supply. Thus in Figure
9-2, if a separate power supply were connected between cathode and col-
lector and if the cavity grids intercepted a negligible part of the beam, the
power supply between the cathode and collector would be the only one
supplying any power to the tube.

It is clear that the two-cavity klystron amplifier has considerable advan-
tage over the conventional triode and tetrode for microwave signal ampli-
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fication. Circuit losses are greatly reduced by the use of resonant cavities
at the interaction gaps and by the use of microwave transmission lines for
making input and output connections. Furthermore, transit-time effects,
which limit the high-frequency performance of triodes and tetrodes, are
largely overcome by the use of velocity modulation. In the following sec-
tions, we shall take a more quantitative look at the electron interaction proc-
ess in the klystron amplifier. Later in the chapter we shall describe the
reflex klystron oscillator.

9.1 Quantitative Theory of Klystron Interaction

The quantitative theory of klystron interaction may be conveniently
divided into three parts, as follows:

1. The velocity modulation produced by a given voltage at the input
cavity.

2. The current modulation at the output cavity resulting from the
initial velocity modulation at the input cavity.

3. The current induced in the output cavity by the current modula-
tion on the beam.

The first and third parts have to do with the interaction between an
electron beam and the grids of a cavity. (The region between the grids of
a cavity is known as the cavity gap.)

(@) Velocity Modulation Produced by an RF Voltage Applied to the Grids
of a Cavity

d The grids of the input cavity are
represented in the equivalent circuit
of Figure 9.1-1. An rf voltage source
is shown connected to these grids.
This voltage source is an equivalent
source at the grids which replaces

—_——_—— e

—_—
DIRECTION
i OF

T —r——— "% the external signal source indicated
- ] ________, in Figure 9-2. As indicated in the

introduction, this voltage will pro-
duce a velocity modulation on the
beam, whose value we shall now
determine.

AsiNwt . .
A Let the z axis be taken in the
N\ direction of electron flow, with the

Fie. 9.1-1 Klystron buncher gap with
rf voltage applied. Velocity modula-
tion is produced on the electron beam.

entrance grid at the position z = 0.
The grids are assumed to be ideal;
that is, all electrons pass through
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without interception, and the rf electric field lines are perpendicular to
and terminate on the grids.
Although an electron is between the grids, it experiences a force due to the

rf electric field. This force causes an acceleration, as in Equation (1.1-1).
dz_ _°p ©.1-1)
e m T

This equation holds for time-varying electric fields as well as for static

fields. For the gap in Figure 9.1-1,

B = —% sin ol 9.1-2)

where d is the grid spacing, and A4 sin «f is the instantaneous gap voltage.
Thus, the motion of an electron is given by the solution to the equation:

dz eA .
9B = masin wl (9.1-3)
Integrating once, we obtain
dz eA
g Yo~ W(cos wt — cos wiy) (9.14)

where {; is the time at which the electron passed through the first grid, and
u, is the dc velocity of the electrons entering the gap. The velocity u, is
given by
e

U, = EV" (9.1-5)
where V, is the de voltage of the electron beam, as in Figure 9-2. Equation
(9.1-4) gives the velocity of the electron at any instant while it is in the gap.
To find the exit velocity, we must substitute the time at which the elec-
tron leaves the gap for¢ in the above equation. Calling this time £, the
exit velocity is given by

u(d) = u, — :TAd(cos wly — €os wh) (9.1-6)

If we assume that the amplitude of the rf voltage 4 is very small com-
pared with the de voltage of the beam V,, the electron transit time in the
gap is very nearly that given by the de velocity alone. Thus, if ¢, is the
instant at which the electron is at the center of the gap,

d
h=1t, — %, (9.1-7)
and
ts = Lo + i (9.1-8)

2u,
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If these expressions are substituted into Equation (9.1-6) and if we simplify
the resulting expression by the use of trigonometric identities, we obtain
the following expression for the exit velocity:

2¢A

u(d) = u, + i sin 25 sin wt, 9.1-9)

If the beam-coupling coefficient M is defined as in Chapter 7,

sin ;—
M= —2%e (9.1-10)
wd
2u,
Equation (9.1-9) becomes
w(@d) = uo + 4
(1 o sm wt,,) (9.1-11)

M is plotted as a function of the gap transit time in Figure 7.1-2. It is
unity for zero transit time and drops off for non-zero values of transit time.

(b) The Bunching Process

Having discussed the process by which velocity modulation is produced
on the beam at the input gap, we next consider the mechanism by which
this velocity modulation causes bunching or current modulation to occur
in the drift region between the two cavities.

This bunching process has already been described in connection with
Figure 9-1, and we shall now seek a quantitative description of the process
in order to answer important questions such as: What should the spacing
be between the two cavities in order to achieve a maximum degree of
bunching? What magnitude of current is induced in the output cavity?

For the moment we shall neglect the mutually repulsive forces of space
charge. This approximation is reasonably valid for low-power tubes, where
the electron density in the beam is relatively small. We shall further assume
that all motion is in the z direction. Physically, this requires either that
the space-charge forces be too small to cause transverse spreading or else
that the electron motion be confined by a strong de magnetic field in the 2
direction.

The electrons emerging from the input cavity have a velocity given by
Equation (9.1-11). Since there are no accelerating fields in the drift space
between the two cavities, each electron moves at a constant velocity given
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by this equation for its particular value of f,. This behavior has been
depicted in the Applegate diagram of Figure 9-1.

Assuming a separation ! between the centers of the input and output
cavity gaps, the time of arrival ¢ of a particular electron at the output
cavity is given by the expression:

t— 1t =

l

MA .
u,,(l + 57, sin wto>
Let us make the simplifying assumption that the input cavity voltage
amplitude is much less than the dc beam voltage. This will be true in most
cases, except for some very high power tubes. The second term in the

(9.1-12)
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Fic. 9.1-2 Output-gap arrival time plotted vs. the time of departure from the input
gap for various values of X, the bunching parameter, defined by Equation (9.1-14).

6 is the dc transit angle. For X greater than unity, some electrons leaving the input
gap at three different instants arrive at the same instant at the output gap.
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denominator is thus much less than unity, and Equation (9.1-12) can be
approximately written as

l MA .
t— i, = Jo(l - E 'I—/-;Sln wto) (91-13)

or, in terms of radians,

MA .
wt — wl, = 0(1 — 5‘ -17;811’1 wt,)

=@ — X sin wi, . (9.1-14)

where 8 = wl/u, is the de tradsit angle between cavities, and X = (M/2)
(A/V,)8 is a parameter known as the bunching parameter.

In Figure 9.1-2 are plotted curves showihg output-gap arrival time as a
function of input-gap departure time over one rf cycle, for various values of
the bunching parameter. One notes that for values of the bunching param-
eter greater than unity, the departure time is a multivalued function of the
arrival time for electrons near the bunch center. However, the arrival time
is always a single-valued function of the departure time.

Let us first consider the situation for X less than unity. The instantane-
ous current reaching the output cavity can be written as

i) = %‘—It 9.1-15)

where dg is the amount of charge arriving at the output cavity in a time
interval d¢. In Figure 9.1-2 the ordinate and abscissa are proportional to ¢
and £,, respectively. We see from this figure that the amount of charge
arriving in a time df can be related to the corresponding departure time
interval df, by

dg = —1.dt, (9.1-16)

since electrons leave the input cavity evenly spaced at a rate given by the
de current. The minus sign is used so that I, may be a positive quantity;
dg is of course negative for electrons.

Substituting Equation (9.1-16) into Equation (9.1-15), we obtain

dt,
“dt

where the derivative is obtained simply by measuring slopes on the curve of
Figure 9.1-2. Current waveforms for several values of the bunching
parameter are shown in Figure 9.1-3. Infinite current peaks are obtained at
the arrival times for which the curves of Figure 9.1-2 have zero slope.

For values of the bunching parameter greater than unity, the fact that
the curve of Figure 9.1-2 is multivalued results in three values of slope for a

i) = -1 (9.1-17)
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F1e. 9.1-3 Beam current waveforms at the output gap. For X greater than or equal

to unity, infinite peaks are obtained at the points corresponding to zero slope in

Figure 9.1-2. In an actual tube, these peaks though large would remain finite be-
cause of the space-charge forces.

given arrival time near the bunch center. This situation is easily handled
as follows. Since Equation (9.1-16) must include the total chargbz;or a
given arrival time, we must include a term for each of the three departure
times; thus

dq = '_Io [dtall + dto|2 + dtol:i] (9~1'18)
Corresponding to Equation (9.1-17), we obtain
. dt, dt, dt,
i(t) = —Io[ E’ . + 715 . + 'Zi‘t' 3] (9.1-19)

In each case, the absolute value of the derivative must be taken. Physically
this corresponds to the fact that the charge incrementdg has the same sign
regardless of the sequence of arrival of ¢€lectrons. A negative value of
dt,/dt merely indicates that electronswhich left the input cavity last arrive
at the output cavity first; dg always has a negative value.

The current waveforms of Figure 9.1-3 may be Fourier analyzed to
determine the fundamental component and the various harmonics. This
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could be done graphically. However, it is possible to solve this problem
analytically. We shall proceed with such an analysis.
The current at the output gap can be written as the Fourier series:

i@t) = —I,+ Zl[a,, cos n(wt — 8) + b, sinn(wt — 6)] (9.1-20)
where

1 (ax g
an == / 1(t) cos n(wt — 0)d(wt)

0—x

and
1 0+x
b, = ;/; (8 sin n(wt — 0)d(wt)

Let us consider first the situation for X less than unity, so that the curves of
Figure 9.1-2 are single-valued.

It will be convenient to change the variable of integration from arrival
time to departure time. Equation (9.1-17) gives us

i()d(wt) = —ILd(wto) 9.1-21)

From Figure 9.1-2, we see that the limits of integration become —= to +m.
When Equations (9.1-21) and (9.1-14) are substituted into the above
integrals, we obtain

An = —%—’/ cos n(wt, — X sin wi,)d{wt,)
and
I, (7 . .
bp = s sin n(wt, — X sin wto)d(wto) (9.1-22)

b is identically equal to zero since the integrand is an odd function of wi,.
The definite integral in the expression for a. is given by a Bessel function:'

T

cos n(wt, — X sin wio)d(wts) (9.1-23)

o (nX) = f
K
Equation (9.1-20) thus becomes
i) = —1, — 21, Y, J.(nX) cos n{wt — 6) (9.1-24)
n=1

For values of X greater than unity, the same expression is obtained. This
is shown in Appendix XV. For small values of X, J1(X) = X/2and J.(nX)

1Reference 9.1, p. 150.
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_is very small for n > 1. Equation (9.1-24) then becomes () = —1I,
[1 + X cos (wt — 8)] for small X and hence for small input signals.

Equation (9.1-24) shows that the various harmonics in the bunched beam
have amplitudes proportional to Bessel functions of order n, where n is the
0.6
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Fia. 9.1-4 Bessel functions of various orders. The maximum value of J; occurs at
X = 1.84 and is equal to 0.582.

same as the harmonic. These Bessel functions are plotted in Figure 9.1-4.
Since the abscissa in this figure is proportional to the transit time between
cavities, we can adjust either the beam velocity or the distance between
cavities so as to obtain a maximum amplitude for any of the harmonics.
For an amplifier, we would make X equal to 1.84 so as to peak the funda-
mental component at the output cavity. On the other hand, it is also
possible to use the tube of Figure 9-2 as a harmonic generator, in which case
we would choose the transit time to correspond to the peak of one of the
higher-order Bessel functions of Figure 9.1-4. Since these other peaks are
nearly as large as that of the fundamental, the two-cavity klystron can be
a very efficient harmonic generator. Of course, the output cavity would be
tuned to the harmonic frequency.

Since the electrons become bunched about an electron which passed
through the input cavity when the voltage across the input cavity was
changing from decelerating the electrons to accelerating them, the center of
the electron bunch arrives at the output cavity delayed by the de transit
angle, but advanced by =/2. This can also be seen by comparison of the
phase of the voltage applied to the input cavity with the phase of the funda-
mental component in Equation (9.1-24).
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(¢) Current Induced in the Output Cavity by the Bunched Beam

To complete the deseription of klystron interaction, we must consider the
current induced in the output cavity by the bunched beam. This problem
has already been considered in Section 7.1(a), where we have considered
the current induced by a modulated beam into a load connected between

two grids. Although the discussion

i(_d_)‘ presented in Chapter 7 was applied

to a tetrode, it might equally well be

applied to a klystron, where we in-

N terpret the pair of grids to be the

grids of a re-entrant cavity reso-
nator.

We shall find it convenient to
adopt the conventions for positive
gap voltage and induced current in-
- dicated in Figure 9.1-5. The direc-
l 1 tion for positive induced current is
opposite to that used in Chapters 6
and 7. In microwave tube work it is
customary to assume that the ac
component of beam current is posi-
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DIRECTION
—_—— OF
- __, ELECTRON
FLOW
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Fic. 9.1-5 Convention for positive in-

duced current adopted in this chapter.

The induced current is equal to M times

the beam current modulation at the

center of the gap (in magnitude and
phase).

tive when directed from left to right.
Thus, the induced current indicated
in Figure 9.1-5 is positive when the
ac component of beam current is

positive.
From Equation (9.1-24), the dc and fundamental components of beam
current at the output cavity are given by

ity = —1I, 4 11c08 w(t — ui) (9.1-25)

where

i = —2I Ji(X) (9.1-26)
and we have substituted 8 = wl/u,. But this is exactly the same type of
wavelike behavior that was assumed for the beam current density in Sec-
tion 7.1(a). From Section 7.1(a), therefore, we have the result that the in-
duced current (with positive direction assumed as in Figure 9.1-5) is given

by My cos w(t — I/u,), or in phasor notation we may write:
I = My i@/uol (9.1-27)

where I and g 7@t are phasor quantities representing the induced
current and the fundamental component of beam current at the gap center,
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respectively. M, is the beam-coupling coefficient for the output cavity.
Simply stated, the induced current is M, times the fundamental component
of the beam current at the gap center, both in magnitude and in phase.

This is really a very important result; the induced current is independent
of the loading of the output cavity. Thus, the modulated beam truly acts

j«———RESONANT
CAVITY
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+ + + + é B ¥
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Fia. 9.1-6 Path followed by the induced charges associated with an electron bunch
passing through a cavity.

as a current source. Figure 9.1-6 shows the path followed by the induced
charges associated with a single bunch of electrons which passes through
the output cavity.

At resonance the phase of the oscillations in the output cavity is such that
maximum decelerating voltage appears across the output cavity when maxi-
mum number of electrons is crossing the gap. This follows from the fact
that at resonance the cavity and load appear as a resistance connected
between the grids, so that when the induced current reaches a maximum,
the voltage across the cavity is also a maximum. This explains the transfer
of energy from the beam to the cavity.

How much power can be delivered to the output cavity and load from the
bunched beam? This question can be answered most easily from a consider-
ation of the equivalent circuit of the output cavity, shown in Figure 9.1-7.

In this equivalent circuit, L and C are the inductance and capacitance of
the re-entrant cavity itself, without the presence of the beam. These
parameters are obtained as discussed in the introduction to Chapter 8.
Similarly G. is a conductance which accounts for the resistive and dieleetric
losses in the cavity. These parameters determine the cold unloaded Q of the
cavity, defined by

Q, =2 (9.1-28)
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Fie. 9.1-7 Equivalent circuit for the output cavity and its load. The symbols used
are defined as follows:

V = gap voltage
I = induced current
C = gap capacitance
L = cavity inductance
g + jb = beam loading admittance
@. = conductance representing cavity losses
@1 = load conductance (as seen from the cavity gap)

1

where . is the cavity resonant frequency in radians.

The beam-loading admittance is given by g + jb. The parameters g and b
are functions of the gap transit time. For an unmodulated beam, they are
given by Equations (7.1-14) and plotted in Figure 7.1-4. Physically, these
parameters express the fact that for a non-zero gap transit time, some
energy is exchanged between the electrons and the rf energy stored in
the output cavity. It is convenient to assume the same parameters for a
modulated beam. This is a small-signal approximation, useful in predicting
the small-signal performance of a klystron amplifier.

In most practical tubes, the output gap transit angle is much less than =,
and the susceptive component is capacitive, as shown in Figure 7.1-4.
Furthermore, when the transit angle is much less than =, b varies linearly
with frequency, and we may write

b= wCs (9.1-29)

where C; = ¢,T,/12. Here g, and T, are defined as in Equation (7.1-14).
The hot unloaded @ is defined by

Q. = @0+ C)
“ G.+g

where w, is the resonant frequency of the cavity with the beam present. Q.
thus includes the intrinsic cavity parameters plus the loading due to the
electron beam. It should be noted that for the small-signal approximation
we are considering, @, is independent of whether or not the beam is velocity
modulated in the input cavity. Thus it could be evaluated by measuring

(9.1-30)



KLYSTRONS 309

the characteristics of the output cavity with the beam turned on, but with
no rf drive on the input cavity.?

In Figure 9.1-7 the conductance G, accounts for the load connected to the
cavity. Since the actual load will be separated from the cavity by wave-
guide, transformers, and various other components, G is an effective value
as seen at the cavity gap. It is defined so as to give a correct value for the
power absorbed for any given gap voltage. The external @ is defined by

_ wo(C + Cb)
““ e

The loaded @ is the @ of the whole circuit of Figure 9.1-7. It is thus given
by

(9.1-31)

Q = wo(C + Cb)

“G ot G (6.1-82)
From the last three equations, we note that

1 1 1

o0 + a. (9.1-33)

The remaining parameters in Figure 9.1-7 are the gap voltage V and the
induced current I, defined previously.

To deliver maximum power to the load, we adjust the parameters such
that

GLo=G.+g¢g (9.1-34)
and
WLIC+ C) =1 (9.1-35)
Equation (9.1-34) may also be stated as
Qe = Qu (9.1-36)

v g+jb T EL ?Gc §GS é’ls

Fia. 9.1-8 Equivalent circuit for the input eavity and the signal source. The
symbols used are as defined in Figure 9.1-7, with the additions:

I, = current source representing the rf input signal
@, = source conductance (as seen from the cavity gap)

2Measurements of resonant cavity characteristics are discussed in Reference 9.2.
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The load conductance may be adjusted by changing the coupling of the
cavity to the load. The resonance condition, Equation (9.1-35), may
be obtained by varying the cavity capacitance or inductance. One common
way to do this is to deform mechanically the cavity to change the gap
spacing, thus changing the cavity capacitance.

The equivalent circuit for the input cavity is shown in Figure 9.1-8. Here
the current source at the right represents the rf input source. The other
parameters have the same meaning as in Figure 9.1-7, except that Gy is
replaced by G., the source conductance.

9.2 Reflex Klystrons

The klystron amplifier of Figure 9-2 is an extremely stable type of micro-
wave tube, where stability refers to freedom from oscillations. In normal
operation there is no feedback from the output cavity to the input cavity,
except perhaps by secondary electrons produced at or beyond the output
cavity which make their way back to the input cavity. In order to make
this tube oscillate, it is necessary to provide an external feedback path from
the output cavity to the input cavity. This can be accomplished by tapping
off a portion of the output power and feeding it back into the input cavity
by means of an external transmission line. The oscillation frequency and
power output are then determined by the simultaneous requirement that
the loop gain be unity and the loop phase shift be a multiple of 27 radians.
The loop phase shift can be varied by changing either the beam voltage or
the length of the feedback cable. Of course, if the frequency is varied any
appreciable amount, the cavities must be retuned.

For many applications of microwave oscillators, it is necessary to change
the frequency rapidly. This is most readily done if the oscillation frequency
can be varied electronically. In the oscillator described above, this can be
done over a limited frequency range by changing the beam voltage. How-
ever, varying the beam voltage simultaneously varies the beam power,
and this results in a larger change in output power with frequency than is
desirable for most applications. This drawback is eliminated in the reflex
klystron described below.

A schematic drawing of the reflex klystron, together with the power
supply connections, is shown in Figure 9.2-1(a). A potential profile along
the electron beam is shown in Figure 9.2-1(b). The electron gun injects the
electron beam through the grids of a re-entrant microwave cavity. The
electrons then approach an electrode known as the repeller, which is at a
lower potential than the cathode. The repelling electric field in this region
causes the electrons to ‘“turn around” and pass once again through the
cavity grids, but in the opposite direction. The electrons are then collected
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on the walls of the cavity or other grounded metal parts of the tube. Since
this tube is a relatively low-power device, the power dissipated in the cavity
by the incident electrons is not excessive. The broken lines in Figure 9.2-1
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Fia. 9.2-1 Reflex klystron and its potential profile. (a) Schematic drawing of the
tube showing the power supply connections. (b) Potential profile along the beam
from the cathode to the repeller.

indicate the trajectories of the outermost electrons in the beam. The reflex
klystron is usually operated without any magnetic field to confine the beam,
and consequently the beam spreads under the influence of its own space
charge. However, since the total distance traveled by the electrons is
small, the total radial spreading is not excessive,

If we postulate an rf voltage on the cavity grids, the beam is velocity
modulated during its first passage through the grids. While the electrons
are in the repeller region, the velocity modulation is converted into current
modulation, much like in the drift space between cavities of a klystron
amplifier. When the current modulated beam re-enters the cavity, it in-
duces an rf current in the walls of the cavity, as in the output cavity of the
amplifier. This induced current is then the source of output power. The
gap voltage is also produced by this induced current. Hence, the cavity
serves a dual purpose; it is both the input cavity and the output cavity
with feedback intrinsically provided.

The bunching mechanism in the repeller region can best be described by
means of the Applegate diagram given in Figure 9.2-2(a). The correspond-
ing gap voltage as a function of time is shown in Figure 9.2-2(b). Time
markers are included on the abscissa in Figure 9.2-2(a), marking the
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Fig. 9.2-2 Electron trajectories in a reflex klystron showing the dependence on the
instantaneous gap voltage at the moment of departure. (a) Applegate diagram for
the 12 mode of oscillation. (b) Instantaneous gap voltage.

instants for which the gap voltage is zero. Figure 9.2-2 (a) shows distance-
time plots for several electrons passing through the cavity at equally spaced
intervals during one cycle of the cavity voltage. The electrons start out
toward the repeller, are “turned around,” and arrive back at the gap at a
later time. Each electron leaves the gap with a different velocity, depending
on the instantaneous value of the gap voltage as it passes through. Electron
B passes through when the voltage is a maximum, and it receives the great-
est increment of velocity. It therefore penetrates farthest toward the re-
peller before being turned back. On the other hand, electron D passes
through when the gap voltage is maximally retarding, thus penetrating the
least distance and arriving back in the shortest time span. Electrons A, C,
and E go through the gap when the voltage is zero and penetrate toward
the repeller an intermediate distance.

We note that a bunch forms around electron C which initially passed
through the gap when the voltage was zero and decreasing. Since the bunch
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arrives back at the gap at such an instant that the voltage is maximally
retarding, energy is transferred from the beam to the cavity. In the dia-
gram shown, eight of the electrons are slowed down in their second transit
through the cavity, whereas only four are speeded up.

Since the de transit time in the repeller region corresponds to 12 rf cycles
for the condition shown in Figure 9.2-2, this mode of oscillation is known as
the 1§ mode. Alternatively, a higher magnitude of reflector voltage would
cause the electrons all to return to the gap in a shorter span of time, and
oscillation in the 2 mode is possible. This ocecurs when the de transit time
corresponds to 2 of an rf cycle. It is not necessary to have the transit time
exactly £ or 1% cycles; oscillations are possible for slight departures from
these values, but at reduced power levels and at slightly different fre-
quencies. It is only necessary that the bunch be so phased that sufficient
energy is transferred from the modulated beam to the cavity to make up for |
losses in the cavity and load. It is apparent that oscillations are possible for
transit times corresponding to n + £ cycles, where 7 is an integer,

With this much of an understanding of the qualitative behavior of the
device, we proceed to take a more quantitative look.

For simplicity, the effect of space-charge forces on the electron motion
will again be neglected. Because of the relatively low beam current of the
reflex klystron, this is a good approximation everywhere except near the
repeller where the electrons are reversing their direction of motion.

The tube has de voltages applied as in Figure 9.2-1, with [ being the spac-
ing from gap to repeller. The polarities of gap voltage and induced current
are taken as in Figure 9.1-5. Assume that there exists an rf voltage across
the gap given by

v(t) = A sin ot (9.2-1)

The exit velocity of an electron is given by Equation (9.1-11),
u(@d) = uo(l + 5 £ sin wt,,) 0.2:2)

where {, is the time at which the electron passes through the center of the
gap.

We shall assume that there is a uniform electric field between the repeller
and the cavity so that the electrons experience a uniform force directed
toward the cavity while traveling in this region. The resulting acceleration
of the electrons is given by the differential equation:

d% _2V0+VR0

B m ] (9.2-3)
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This equation can be integrated once, obtaining

Vot Vao
de _ (@) — &Pt Lo — )

7 (9.2-4)

where ¢, is the time at which the electron first passed the mid-point of the
cavity. Strictly speaking, the exit time from the gap rather than ¢, should
be used in Equation (9.2-4).

Let us now find an expression for the time ¢ at which the electron returns
to the gap. This value is obtained by solving Equation (9.2-4), with

dz
T —u(d) (9.2-5)
since the electron neither gains nor loses net energy in the repeller region.
We obtain

2mlu, M A .
= —_e(Vo T VRa)[l + 3 V. sin wt,,]

where use has been made of Equation (9.2-2). Multiplying through by the
radian frequency, we obtain

t—t (9.2-6)

ot — wlo = 0[1 + % ‘% sin wto] ©9.2-7)
where
2mwlu,
b= V. T Ve 0.2-8)

is the de transit angle in the repeller region.

To find an expression for the instantaneous current on the beam as it re-
enters the cavity, we proceed in the same manner as in Section 9.1, except
that there is a different relationship between the departure and arrival
times of an electron, that is, Equation (9.1-14) is replaced by (9.2-7).
Comparing these two equations, we note that they are identical except for
the algebraic sign of the term containing the bunching parameter X, where

MA
X = 5 700 (9.2-9)
The result for the reflex klystron therefore is given by Equation (9.1-24),
except that X must be replaced by —X. We thus have the following result
for the beam current injected into the cavity gap from the repeller region:

i) = =1, — 2I, Zl(—l)"J,,(nX) cos n(wt — ) (9.2-10)
where use has been made of the identity?®

3Reference 9.1, p. 128.
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Ju(—2) = (=) (x) 9.2-11)
The fundamental component of beam current is
u(t) = 2IJ1(X) cos (ot — 6) (9.2-12)

In the notation of Figure 9.1-5, the electrons travel from right to left
through the grids, so that the induced current phasor is given by

= —2MIJ(X)e# (9.2-13)

which is —M times the phasor representing the current of Equation
(9.2-12). )

The equivalent circuit of the cavity is given as in the klystron amplifier
by Figure 9.1-7, with one change. The beam-loading admittance is denoted
by ¢’ + jb’ instead of g + jb, since in a reflex klystron the results of Section
7.1(b) are not applicable. This is true for two reasons. First, the beam
traverses the cavity twice and on its second transit is highly bunched.
Second, the secondary electrons due to the beam impact contribute sig-
nificantly to beam loading.

The induced current I acts as a current source producing the gap voltage
V. This voltage in turn is the cause of the original velocity modulation on
the electron stream.

When the tube is oscillating in the steady state, we may write

—I_i +G+jB=0 (9.2-14)

where
G=¢g +G.+G,
and

1
—_ !
B=b% +wC——wL

The amplitude and frequency of oscillation are determined by the condition
that this equation be satisfied for both the real and imaginary parts. Let us
define an electronic admittance by

I
Y. = -5

Using Equations (9.2-1), (9.2-9) and (9.2-13), we have the following formula
for the electronic admittance:
_ 2MIJ(X)e?
¢ Ae
_ I.M%2J,(X)
T2V, X

(9.2-15)

G0 (9.2-16)
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At oscillation, this admittance appears as a negative conductance shunted
by some susceptance.

The- electronic admittance is nonlinear since it is proportional to the
factor

271(X)
X

and X, the bunching parameter, is proportional to the rf gap voltage. This
factor of proportionality is shown in Figure 9.2-3. As the magnitude of the
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Fia. 9.2-3 Factor by which the electronic admittance varies with signal level. As
the signal level goes to zero, this factor approaches unity.

rf gap voltage goes to zero, this factor approaches unity, and we obtain the
small-signal value of the electronic admittance,

LM 2061'(%-0)

o

Y, =

(9.2-17)

When this admittance is plotted on a rectangular admittance chart as a
function of 6, the de transit angle, one obtains the admittance spiral shown
in Figure 9.2-4. The admittance starts at the origin for zero transit angle
and then spirals outward and clockwise as the transit angle is increased.
Oscillations are possible for values of the transit angle which produce a
negative conductance which is greater in magnitude than the positive con-
ductance represented by the load and losses of the cavity. Maximum mag-
nitudes of negative conductance are obtained for values of 8 given approxi-
mately by n + 2 cycles, where n = 0,1,2 etc. The electronic admittance
spiral corresponding to any level of oscillation, that is, for a value of X
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F1g. 9.2-4 Locus of small-signal electronic admittance Y, on a rectangular im-

pedance plot. The locus spirals out from the origin as the dec transit angle is in-

creased from zero. Oscillations are obtained for negative conductances greater in

magnitude than the total conductance loading the cavity, that is, for points to the
left of the line —G — jB.

greater than zero, may be obtained from the small-signal spiral by shrinking
the spiral radially by the factor 2/:(X)/X obtained from Figure 9.2-3.
Equations (9.2-14) and (9.2-15) may be written as

Y.= —(G + jB) (9.2-18)
We now look for a graphical method of solving this equation so that oscilla-
tion power and frequency can be predicted as a function of the de transit
angle 6. For a fixed cavity geometry, the total shunt conductance G may

be assumed constant over the frequency bandwidth of the cavity. The total
shunt susceptance may be expanded as

s
wCr — 1/wL, = CT(w - 7")
= oo T @l —~ w)

w

B

& 2C7Aw & 2GQ,i—“’ (9.2-19)
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where Cr is the gap capacitance plus a capacitance to account for beam
loading, and Q, is the loaded @ with the beam present, defined in Equation
(9.1-32). w, is the radian resonant frequency with the beam present. We
may plot

— (@) =~ 1+ 2082 9.2-20)

as a function of frequency in Figure 9.2-4. The plot consists of a vertical
line G units to the left of the origin. Equal increments of distance along the
line correspond to equal increments of cycles off resonance. As the fre-
quency is increased, the corresponding value of cavity admittance is found
at a lower point on this line. By Equation (9.2-20) the frequency range
between any two values of cavity admittance is inversely proportional to Q..

By Equation (9.2-18) an operating point in Figure 9.2-4 is found as the
intersection of the cavity admittance locus EF and the electronic ad-
mittance spiral for the particular value of gap voltage. Thus in Figure 9.2-4
we note that small-signal oscillations (X = 0) are possible at the points E,
F,H,K, L,and M, and the corresponding values of frequency and 6 may be
read off. From the values of 8, values of the repeller voltage are determined
from Equation (9.2-8), given the beam voltage V..

How does one determine the operating conditions for higher levels of
oscillation? Assume that the tube is oscillating at point E on the chart, and
the repeller voltage is decreased so as to inerease @ to correspond to the line
OC. The small-signal admittance spiral has a larger magnitude of negative
conductance than the positive value of cavity conductance. Hence oscilla~
tions will build up in amplitude and the admittance spiral will shrink until
the conductances are equal in magnitude, that is, until point C recedes to
point D on the shrunken spiral. An evaluation of the ratio of OD to OC
gives the value of 2/1(X)/X, and hence the oscillation amplitude can be
determined.

Oscillations of varying amplitude and frequency are produced con-
tinuously as one decreases the repeller voltage so as to move from point E
along the line EF to point F. This whole range of operation is known as the
33 mode, since the center occurs at 6 = 32 cycles. Similarly, the 2% mode
of oscillation is produced over the range of transit angles needed to vary the
electronic admittance from point K to point H. The 12 mode exists for
transit angles needed to vary the electronic admittance from point M to
point L. However, oscillations in the 2 mode are not possible since the
cavity conductance is too large; that is, the cavity is loaded too heavily to
permit oscillation in this mode.

A physical description of the buildup of oscillations may also be presented
with reference to Figure 9.2-4. Suppose the electron beam is suddenly
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turned on with a set of electrode voltages corresponding to the line ODC.
At this instant there exists an appreciable range of frequencies for which the
net conductance is negative and also for which phase conditions are appro-
priate for positive feedback (note that this is not the frequency range cor-
responding to the line segment ML, since the latter range holds only for
sinusoidal steady-state signals). Noise within this frequency range is
amplified in a regenerative manner and builds up in amplitude. As the noise
builds up, the negative conductance decreases in magnitude and the fre-
quency range for regenerative amplification decreases. Finally, a stable
operating: condition is obtained for which the amplification bandwidth is
sufficiently narrowed so that the produet of the input noise power and the
amplifier gain is equal to the output signal power. This bandwidth is so
narrow that it corresponds practically to a single frequency. This descrip-
tion of oscillator operation is useful in analyzing such quantities as signal
buildup-time and oscillation line width. It applies not only to the reflex
klystron but also to all other types of sinusoidal oscillators.

By means of the graphical procedure described above one can plot curves
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Fic. 9.2-5 Theoretical output characteristics of a reflex klystron. These curves
were computed directly from Figures 9.2-3 and 9.2-4, with absolute values chosen so
as to give results typical of commercially available tubes.
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of power output and frequency vs. repeller voltage for any tube. Such
curves are presented in Figure 9.2-5 where parameters have been chosen so
as to obtain typical operating values. Three modes are obtained. For this
example, modes of order higher than the 32 mode are not possible, since
further reduction of the repeller voltage does not increase the transit time
sufficiently to obtain the next higher mode. It should be noted that lower
power output is obtained as the mode number isincreased. From Equation
(9.2-9) the gap voltage magnitude 4 is proportional to X /8. Both X and ¢
increase with increasing mode number, but 8 increases faster, so that the
ratio X /6 decreases.

The reflex klystron has been the most common microwave tube for many
years. With the cavity tuned to a nominal frequency, electronic tuning
over a considerable bandwidth is possible merely by varying the repeller
voltage. Since the repeller draws no beam current and since the capacitance
from the repeller to ground may be made very small, the output frequency
can be modulated by the simplest of electronic circuitry.

The reflex klystron is frequently used as a local oscillator in a microwave
receiver; the electronic tuning obtainable is ideal for automatic frequency
control. It is also commonly used as a laboratory signal source and as an
FM transmitter frequency-deviator tube.

The plots of power output vs. repeller voltage presented in Figure 9.2-5
are typical. As the mode number is increased, wider tuning bandwidths are
obtained, but the power output is decreased. Since wide tunability is
usually the most desirable feature, most reflex klystrons are designed to
operate in high-order modes, typically the 3%, 43, and 52 modes. In order
to obtain large bandwidth, Q; is made quite low. However, the large value
of G does not permit oscillations in the lower modes.

Different center frequencies may be obtained by tuning the cavity to
different resonant frequencies and adjusting the repeller voltage. Cavity
tuning is often accomplished by mechanical deformation of the cavity size
using a bellows type of construction. The output power can be controlled
by changing the beam voltage and current. The beam current can be con-
trolled independently of the beam voltage if a control grid is included in the
electron gun. This permits amplitude modulation of the output power.

An example of a reflex klystron is the WE-449A, shown in cross section in
Figure 9.2-6. This tube uses an external type of cavity in which the in-
ductive portion is largely outside of the vacuum envelope of the tube. A
ceramic window separates the internal and external portions of the cavity.
This type of construction greatly simplifies the mechanical tuning adjust-
ment since the tuning adjustment can be made outside of the vacuum. In
the 449A, this adjustment is made by the use of a plunger in the external
cavity. The tube envelope is constructed entirely of metal and ceramie.
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Fig. 9.2-6 WE-449A reflex klystron. This metal-ceramic tube has an overall height
of approximately 64 em and has the operating characteristics given in Table 9.2-1.

The electron gun is of the type shown in Figure 4.5-1(b), which generates
a relatively high perveance beam of approximately 1 mm diameter. No
magnetic field is used to prevent space-charge spreading of the beam, since
the beam travels a relatively short distance.

The copper grids of the eavity have a geometry resembling the spokes of a

TasLE 9.2-1. WE-449A OPERATING CHARACTERISTICS

Frequency range, Mc. .......................... 5925-6425
Beam voltage, volts............................. 450

Beam current, ma........... ... ..o oLl 48
Perveance, amp /volt¥2. .. ............ ... ... .... 5.03 X 10—¢
Repeller voltage, volts. .. ....................... 75 to 125
Mode....oovvieee 23

Power output, mw. .. ...... ... . ... . ... ....... 125

Modulation sensitivity, Mc/volt ................. 1.5
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wheel in order to minimize electron interception. The gap spacing is
0.58 mm; the gap has a capacitance of 0.3 pf. The repeller electrode is cup-
shaped in order to refocus the spreading beam so that it will pass through
the grids on its return. The cavity has a hot unloaded @, of 135 and a hot
loaded Q; of 80.

The operating characteristics of the 449A are given in Table 9.2-1. The
modulation sensitivity is defined as the ratio: (change in frequency of the
output produced by a change in repeller voltage)/(change in repeller
voltage). Greater than 40 mw of power is obtained over an electronically

tunable bandwidth of 65 Mec.

9.3 Space-Charge Waves

Up to this point we have neglected the forces of mutual repulsion of the
electrons. This has been justified insofar as we have considered low-power
devices in which the density of electrons in the beam is small. However, -
in the next section and in further chapters, we shall consider high-power
amplifier tubes in which the forces between electrons play an important role
in modifying the rf performance. Therefore, we must study the forces
which are produced by the bunches of electrons existing in tubes such as
the klystron amplifier and the way in which these forces tend to modify
the bunching process.

In Section 3.4, we have considered the forces due to de space charge in
electron beams, that is, in beams of uniform charge density with no bunch-
ing. Also discussed were the means of compensating for these forces using
uniform or periodic axial magnetic fields or periodic axial electric fields. In
the present section we shall consider the complementary effects of the rf
bunches of electrons as a perturbation on the electron motion. We shall
assume that the beam is confined to a nearly uniform diameter by one of the
methods described in Section 3.4. It will be convenient to assume that the
various quantities associated with an electron beam consist of a de part
plus an rf perturbation due to the electron bunches. In general, we shall
assume that the rf perturbation is small compared with its d¢ counterpart.

(a) A Graphic Illustration of Space-Charge Waves

At this point it may be helpful to consider a graphic illustration of rf
space-charge forces in an electron beam. Consider Figure 9.3-1. We wish
to study two successive bunches of electrons as they travel down a drift
tube at constant dc velocity. There is a nearly infinite magnetic field in the
direction of travel so as to prevent radial excursions of the electrons. For
simplicity, we shall assume that all the electrons in one transverse plane
move as a unit, constituting an inflexible disc of charge. This is a good ap-
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proximation for a thin beam. Although the electrons are moving to the
right with an average velocity given by the de voltage, we shall confine our
attention to the relative motion of the dises. Thus, we shall view the
motion from a frame of reference moving at the average electron velocity.

In Figure 9.3-1(a) are shown the discs comprising the two bunches at one
instant of time. Discs D and H are at the centers of a bunch and anti-
bunch, respectively. Thus, they have a velocity equal to the average
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Fic. 9.3-1 Oscillations due to space-charge forces in a reference frame moving at the

de velocity of the electrons. Five successive instants of time are shown, separated by

an eighth-cycle of the oscillation frequency. Instantaneous velocity vectors are
shown above the charge disecs.
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velocity of the beam and remain stationary in our frame of reference. The
center disc of the bunch exerts a repulsive force on the other discs in the
bunch. Hence, discs 4, B, and C are pushed to the left, whereas E, F, and G
are pushed to the right.

Evidently the beam acts as an elastic medium, and oscillations of the
dises in the axial direction will occur. A fraction of a cycle later in these
oscillations the discs appear as in Figure 9.3-1(b). Discs 4, B, and C are
moving to the left (in the reference frame) and are still being accelerated in
that direction by the space-charge force of the bunch. At the same time
discs E, F, and G are moving and being accelerated to the right.

Still later, in Figure 9.3-1(c), the discs have attained a uniform spacing.
However, they are not stationary in the reference frame. Dises 4, B, and C
are moving to the left, and discs E, F, and G to the right. Each disc sees
as much space charge to the left as to the right; hence, the instantaneous
acceleration is zero, and the discs have all reached their maximum velocity
in the reference system. This is the instant for which the perturbation of
charge density is zero; thus the rf components of velocity and charge dens-
ity are 90 degrees out of phase.

An eighth of a cycle later, we have the situation depicted in Figure
9.3-1(d). A bunch is now beginning to form centered about disc H. The
repulsive forces emanating from the center of this bunch act in such a direc-
tion as to slow down the motion to the left of discs 4, B, and C. Similarly,
the motion to the right of dises E, F, and @ is also slowed down.

These electrons are finally brought to rest in the reference frame at the
instant depicted in Figure 9.3-1(e). At this instant the instantaneous rf
velocity is zero. The repulsive bunch is pushing to the right on dises 4, B,
and C, and to the left on discs E, F, and G.

For the next half cycle, the discs retrace their motions in the opposite
directions, appearing as in Figure 9.3-1(d), (c), (b), and (a), successively.
After arriving back at the positions in Figure 9.3-1(a), the cycle repeats
itself. Thus the discs oscillate back and forth in the reference frame in a

simple harmonic motion about the average positions shown in Figure
9.3-1(c).

(b) Expressions for the AC Velocity, Charge Density, and Current Density

From the preceding discussion, we can write equations describing the
motion of the charge discs of Figure 9.3-1. Let us assume that the bunches
are produced by an rf source of radian frequency » at some distance to the
left by some means such as a cavity gap. Since the beam velocity is u.,
the bunch spacing is given by

u,,;— = - (93-1)
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where 8. = w/u,.

Let 2’ be the axial coordinate in our frame of reference which moves with
the dc beam velocity. We shall assume that the origin is at the location of
electron disc H (which we have assumed stationary in this reference frame).
Let w, be the frequency at which the discs oscillate back and forth in the
reference frame.

If we assume that the velocity and charge-density perturbations are
simple sinusoidal variations in both time and position, the behavior shown
in Figure 9.3-1 may be described mathematically by the two equations:

p = B cos B2 cos(wd + ) (9.3-2)
u = —C sin B’ sin(wt + @) (9.3-3)

where p and u are the instantaneous rf charge density and velocity pertur-
bations. B and C are positive constants determined by the magnitude of the
rf perturbation, and « is a constant which determines the phase of the
oscillations. The reader may verify that these relations hold for each of the
instants illustrated in Figure 9.3-1. These two perturbations are seen to be
90 degrees out of phase in both time and axial position.

Equations (9.3-2) and (9.3-3) may be written in terms of the laboratory
reference frame, where 2z is the axial position, using the relationship

z2=2 4 ud (9.3-4)
obtaining
p = B cos(Bez — wi) cos(wet + a) (9.3-5)
u = —Csin(B2 — wf) sin(wgt + &) (9.3-6)
The total charge density and velocity are given by
Prot = —pot+ p 9.3-7)
Utot = Uo + U (9.3-8)

where p, is the magnitude of the electron charge density. Similarly, the
total current density is written as

Jt,of, = —Ja + J (9.3-9)

whereJ, is the magnitude of the de current density, and J is the rf perturba-
tion. We shall refer to this current density in free space as convection cur-
rent density in order to distinguish it from conduction current density
flowing in a conductor. The positive direction for this current density is
taken in the +2z direction.

The instantaneous convection current density at any point is defined as
the product of the instantaneous velocity and charge density at that point.
Thus, we have

Jtot = protlhtot (9.3-10)
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or
_Jo +J = —pPollo + Uop — PoU + pU (93'11)

We assume that the rf perturbation is small compared with the correspond-
ing de quantity; hence, the term pu can be neglected in comparison with the
other terms since it is the product of two small perturbations. Using the
fact that J, = pst,, we obtain

J = Up — po (9.3-12)
The equation of continuity, Equation (1.3-2), can be written for the rf
perturbations as

aJ _ dp
%= T (9.3-13)
since J is not a function of the transverse coordinates. From Equations

(9.3-5), (9:3-6), and (9.3-12), we obtain

%: = —wB sin(Be — wb) cos{wgd + @) + Bepol cos(Bz — wit) sin(wgt + )
(9.3-14)

and

_g_;’ = —wBsin(Bz — wt) cos(wgt + a) + w,B cos(Bez — wt) sin{wgt + @)

(9.3-15)
Equating these last two equations, we obtain
weB = BepL (9.3-16)
relating the magnitudes of the velocity and charge-density rf variations.
Using this relation, Equation (9.3-12) yields
J = u,B cos(Bz — wt) cos(wd — @) + w—c:uoB sin(Bz — wi) sin(wd + a)
(9.3-17)
In practical microwave tubes w,/w is small compared with unity, as we shall

see later when we evaluate »,. Hence, the second term in this equation may
be neglected in comparison with the first, and we obtain

J = u,B cos(Bz — wt) cos(wgt + ) (9.3-18)
(¢) The Plasma Frequency

Next, we shall obtain a method for determining w,, the frequency at
which the space-charge forces cause the electrons to oscillate back and forth
in the reference frame. In addition, we shall verify the sinusoidal behavior
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assumed for the rf variations. We shall accomplish this by examining the
electron motion of Figure 9.3-1 in a more quantitative fashion.

Our results will be derived for a one-dimensional beam, that is, for a beam
that is uniform in the transverse direction and infinite in diameter. The
oscillation frequency for this particular case will be designated w,. Later we
shall show how the results can be altered to apply to a beam of finite cross-
sectional area, with or without surrounding metal walls.

Starting with the case of a beam of infinite diameter, we note that if the
discs in Figure 9.3-1 are uniformly spaced, as in Figure 9.3-1(¢), there is no
accumulation of charge at any position and hence no net electric field at any
point. A uniform charge density — p, exists everywhere. Consider a typical
dise, disc B, and let z,’ be its equilibrium position shown in Figure 9.3-1(c).
In Figure 9.3-1(d), dise B has moved to a new position 21’. This movement
produces a charge excess in the region 0 < 2z’ < 2, over that which existed
when the discs were uniformly spaced given by

Ag = —po(es' — 21') (9.3-19)

per unit area of the beam. This excess charge produces a restoring electric
field at 2’ = 2’ given by*

E, = —f;ﬁ(z.,' —2) (9.3-20)
Thus, the acceleration of the electrons comprising a disc at any position 2’
is given by

3 =2l ) (9.3-21)

m g,

using Equation (1.1-1). This equation has the solution

2’ — 2z, = F cos(wypt + 7) (9.3-22)
where
3 - EPo -
wpt = o (9.3-23)

The frequency corresponding to w, is called the plasma frequency. It is pro-
portional to the square root of the electronic charge density. This frequency

¢The rf electric field as used here and in the remainder of this section is an rf perturba-
tion on the dc electric field. As such, it represents a departure from the equilibrium
value. Thus, it need not originate on positive charge and terminate on negative charge;
rather, it originates on a deficiency of negative charge and terminates on an exrcess of
negative charge. Some authors present a clearer physical picture by assuming the elee-
tron beam to be completely neutralized by immobile positive ions, so that rf electric
field lines may originate on positive charges. This approach is not used here because it
implies incorrectly that space-charge neutralization by positive ions is necessary for
these space-charge waves to exist.
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applies only to a beam of infinite diameter. Practical beams of finite diam-
eter are characterized by a plasma frequency which is less than w,. This
lower plasma frequency is called the reduced plasma frequency and is
designated w,. F and 7 are independent of time, but they may be functions
of z,’, the relative position in the bunch. For example, for 8,2," equal to 0 or
=, F must be zero, since discs H and D are stationary in the reference frame.
The motion described by Equation (9.3-22) is simple harmonic motion of
electrons about their equilibrium positions in the reference frame. Let us
apply this result to the electrons leaving the input gap of a klystron ampli-
fier. These electrons have a velocity given by Equation (9.1-11) at the exit
of the gap,
eMA
w(d) = uo+

o

sin wi, (9.3-24)

where ¢, is the time at which the electrons pass through the gap. Since the
electrons under the influence of the space-charge forces exhibit simple
harmonic motion, the velocity at a later time ¢ is given by

Usot = Uo + enIZA sin wt, €08 wp(t — to) (9.3-25)

where w, corresponds to the frequency of the harmonic motion as discussed
above.

The position of an electron disc is given by the product of the elapsed
time and the average velocity to that instant. Since the rf perturbation of
velocity is assumed small compared with the de velocity, the average
velocity is given approximately by u,. Hence,

z = u,(t — t,) (9.3-26)
This expression may be used to eliminate wt, from the sine term in Equa-
tion (9.3-25). Thus, we obtain

Utoy = Up — emuA sin(Bez — ot) cos(wat — wylo) 9.3-27)

This result is identical to that given by Equation (9.3-6), deduced from
Figure 9.3-1, if we take & = (7/2) —w,t, and w, = w,. Thus, in an infinite
beam the electrons oscillate back and forth in the reference frame at the
plasma frequency. In a beam of finite diameter, the restoring forces are
somewhat weaker, and we shall find that the frequency of oscillation «w,
i8 less than w,.

The phase angle a = (7/2) — w4, is essentially constant for any one
bunch. This can be shown as follows. Over one cycle of the modulation on
the beam, and hence over one bunch, ¢, changes by 2w /w, and w,t, changes
by 2ww,/w. Since at microwave frequencies w,/w is usually small compared
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with unity, the total variation in w,, over a bunch is small. In Figure
9.3-1 we have presented the results as though o were constant, for simplicity.

(d) Beams of Finite Diameter

The results we have derived so far have been derived for an electron
beam infinite in cross-sectional area. All practical beams are, of course,
of finite diameter; hence, we should inquire how the foregoing results are
modified for a finite beam.

Let us return to a consideration of the forces between dises of charge.
It will be easier for us to visualize the rf electric field lines if we can have
them begin on positive charges and end on negative charges.® Since these
field lines are due to excess charge (from the equilibrium value) in any
region, we can picture a deficiency of negative charge in any region as a
positive charge. The electric field lines due to the equilibrium charge
density —p, are not considered at all, since the beam is assumed to be
confined by one of the focusing schemes of Section 3.4. In other words, the
electric field we shall depict is the difference between the total instantaneous
electric field and the dc electric field at any point.

The situation for an infinite beam is shown in Figure 9.3-2(a). The
negative discs of charge (shown shaded) are clustered around the center of
the electron bunch. The positive discs (unshaded) are clustered around the
antibunch. The electric field lines in this case are given by straight hori-
zontal lines from the positive to the negative dises.

In Figure 9.3-2(b) the analogous situation is shown for a beam of finite
diameter. The electric field lines are no longer straight horizontal lines,
but instead they bow out. Thus, the axial component of electric field at
any disc is reduced in magnitude. This occurs for two reasons. First,
the bowing out of the field lines increases the area through which the total
electric flux passes. Second, the tilting of the field lines means that only a
portion of the total field exists as an axial component.

As a consequence of the weakening of the axial electric field, the total
restoring force on a disc is reduced. Hence, Equation (9.3-20) may be
written as

E. = —Rz’ei’(z,,' —2) (9.3-28)
where R?is a number less than unity and is a function of the beam diameter.

The differential equation of motion (9.3-21) is altered by the same factor,
and one thus obtains the solution:

2’ — 2,/ = F cos(Rw,t + 8) (9.3-29)

5See footnote 4.
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Fia. 9.3-2 RF electric field lines in various beams. Positively charged discs (un-

shaded discs) are used in regions where the instantaneous electron density is below

the dc value. The shaded dises are negatively charged and represent electron

densities above the dec value. (a) Portion of an infinite beam in which all quantities

are uniform in the transverse directions. The rf electric field lines are straight and

parallel to the direction of electric flow. (b) Beam of finite diameter. (c) Finite
diameter beam in a drift tube.

for the finite beam, instead of Equation (9.3-22). R is known as the space-
charge reduction factor, and we may define the reduced plasma frequency as

wg = Rw, (9.3-30)
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All of the results derived for the infinite beam are directly applicable to the
finite beam. It is necessary only to replace w, by w,. Implicit in this de-
velopmient is the requirement of a strong axial magnetic field so that radial
excursions of the electrons due to transverse f electric fields are prevented.

In Figure 9.3-2(c) is shown the field pattern obtained when the beam is
surrounded by a metal cylinder. Many of the field lines terminate on
charges on the metal wall. This further reduces the restoring force which
tends to bring the discs back to their equilibrium positions. Thus, the
reduction factor R is seen to be a function of both the beam diameter and
the proximity of a metal wall. As the wall comes closer to the beam, the
space-charge forces become smaller, and the frequency of oscillation de-
picted in Figure 9.3-1 becomes smaller.
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Fie. 9.3-3 Plasma frequency reduction factor vs. beam diameter for a solid, cylin-
drical beam of radius b in a concentric, perfectly conducting cylinder of radius a
(Reference 9.3). (Courtesy of Transactions IRE)
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Values of the space-charge reduction factor have been calculated for
various kinds of beams with surrounding metal walls.® These results have
been obtained by solving Maxwell’s Equations inside and outside of an
idealized electron beam, such as we have considered, and matching bound-
ary conditions at the surface of the beam. Figure 9.3-3 shows the result
for a solid cylindrical beam centered in a perfectly conducting metal cyl-
inder. The reduction factor is plotted as a function of 8b = wb/u,, where
b is the beam radius. a is the radius of the conducting cylinder. Several
curves are given, each for a different ratio of cylinder diameter to beam
diameter. Most microwave tubes have beams with 8.5 in the range 0.5
to 1.0, so that the reduction factor is typically % to 3.

Let us determine the ratio w,/w for a microwave tube with the following
properties:

Beam voltage, volts. .................. 2400
Beam current, ma,.................... 40
Beam diameter, mm. ................. 1.3
Wall diameter, mm................... 2.3
Frequency, Me....................... 6000

We shall describe a traveling-wave tube with these parameters in
Chapter 10. From these data we obtain:

po = 1.04 X 1073 coulomb/meter?

22 = 0.12
w
Bb = 0.84
From Figure 9.3-3 we find that
R =0.46
so that
22 = 0.055
w

This confirms the previous assumptions that w,/w is small compared with
unity in a typical case.

The rf part of Equation (9.3-27) for the instantaneous velocity can be
written in a more convenient form as

w = _%u,,zw% cos Bz sin(Bez — wf) (9.3-31)

6Reference 9.3.
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where we have substituted for ¢ — ¢, from Equation (9.3-26), and we have
set
= Y
B, = - (9.3-32)

We use w, here instead of w, so that the results will be applicable to beams
of finite diameter. Since 3, is much less than 8., Equation (9.3-31) repre-
sents a wave propagating with a phase velocity equal to the de beam veloe-
ity and whose amplitude is slowly changing with distance. A plot of this
equation vs. distance at the instant wt = x/2 is shown in the upper half of
Figure 9.34.

The equation for the current density may be obtained from Equation
(9.3-18) in the same manner. Thus

J = J M Ié sin Bgz cos(Bez — wt) (9.3-33)
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Fia. 9.3-4 Variation with distance of the rf velocity and convection current density

for an electron beam which receives velocity modulation from an input cavity placed

at z = 0. The output cavity is placed at 8,2 = 7/2 to obtain maximum induced

current. The waveforms are shown at a particular instant of time. The envelopes re-

main stationary, whereas the sinusoidal waves within move to the right
at the de velocity.
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where use has been made of Equations (9.3-6), (9.3-16), (9.3-18), (9.3-31)
and the fact that & = 7/2 — wge, and Jo = u .p.. J is plotted in the lower
half of Figure 9.3-4 for the instant wt = =/2.

From Figure 9.3-4 we note that the velocity modulation magnitude is a
maximum at the position of the input cavity gap. Beyond the gap, the
velocity modulation magnitude varies as | cos 84 |, whereas the current
modulation magnitude varies as | sin 8,2 |. At a position given by

Boops, = —’25 (9.3-34)

the current modulation has become a maximum and the velocity modula-
tion is zero. This distance may be termed a quarter-plasma wavelength.
If one were to construct a two-cavity klystron, the output cavity would be
placed at this distance from the input cavity in order to obtain maximum
induced current in the output cavity.

At this point it will be well to note that the foregoing solutions are small-
signal solutions, albeit space-charge forces are included. By comparison,
the solutions of Section 9.1(b) are applicable under larger signal conditions
— limited chiefly by the approximation in going from Equation (9.1-12)
to (9.1-13) — but neglecting space-charge forces. The more general prob-
lem of large signal interaction with space charge considered requires
elaborate computer calculations for solution.”

Thus we have from Equation (9.3-33) the result that with space charge
at small signal levels the maximum current modulation occurs at the posi-
tion given by Equation (9.3-34) with a magnitude

i lwMA

I, 2wV,
This may be compared with the results of Section 9.1(b) for a finite signal
level, but neglecting space charge. From Equation (9.1-24) we have the
result that the maximum current modulation is given by

(9.3-35)

£ =116 (9.3-36)
at a position corresponding to
CVD
Bezops = 3.68 =2 (9.3-37)

These limiting results may be compared with the numerical results obtained
by Webber which include both space charge and finite signal level.® Figure

7"Reference 9.4.
8Reference 9.4.
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Fie. 9.3-56 Variation of the magnitude of the fundamental component of con-
vection current with distance from the input gap, as given by computer calculations.
For a beam of fixed voltage and current, the different curves represent operation at
different input signal voltages, A.The nonlinear theory, neglecting space charge, de-
veloped in Section 9.1 predicts a nonvarying maximum value of 1.16 occurring at
values of the abscissa marked B for five of the curves. The small-signal, space-
charge theory developed in this section predicts maxima, as given by levels marked ¢
for two of the curves, occurring at a fixed distance given by one quarter of a reduced
plasma wavelength. The limits of applicability of the two theories are readily
apparent (Reference 9.4). (Courtesy of Transactions IRE)

9.3-5 shows Webber’s calculated plots of the magnitude of the fundamental
component of current modulation vs. distance from the input cavity for
various values of the parameter w,V./wMA, which we have seen appears
in Equations (9.3-35) and (9.3-37). This parameter may be considered to
show the variation with input-cavity-signal level A for a given electron
beam, wherein w,, w, V,, and M are constant. At small signal levels, Equa-
tions (9.3-34) and (9.3-35) are seen to hold, whereas, as the signal level is
increased, the values given by Equations (9.3-36) and (9.3-37) are obtained.
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(e) Fast and Slow Space-Charge Waves

The variation of the magnitude of the velocity and current density with
distance as shown in Figure 9.3-4 has the appearance of a standing wave.
Alternatively the behavior may be written as the sum of two traveling-
wave disturbances. Thus, Equations (9.3-31) and (9.3-33) may be written,
respectively, as

u= }lu.,M%[sin (wl — B,2) + sin(t — B.2)] 9.3-38)

and
T = — Y Oy A inet — 82) — sin(t — B2)]  (9.3-39)

4 0, V,
where

Br = Be — Bq (9.3-40)

and
B, = Bo+ Ba (9.3-41)

These two traveling waves are known as the fast and slow space-charge
waves, since their phase velocities are respectively faster and slower than
the dc beam velocity.®

The fast and slow space-charge waves are two normal modes of excitation
possible on a constant-de-velocity electron beam in a drift tube. This
means that each wave may exist by itself, or any combination of the two
may exist. The input gap in a klystron excites the two waves such that the
two velocity components are equal in magnitude and phase at the gap,
whereas the current-density components are equal in magnitude but op-
posite in phase. The two different phase constants 8; and B, acting over a
distance given by Equation (9.3-34) bring the current density components
into phase and the velocity components 180 degrees out of phase. Thus,
when space-charge effects are taken into account, the klystron interaction
principle may be thought of as an interference effect between the fast and
slow space-charge waves.

As a final point, let us consider how the two-cavity klystron can be used
to excite an electron beam with only the slow space-charge wave in the
region beyond the output cavity. Let the input cavity produce the velocity
and current-density variations given by Equations (9.3-31) and (9.3-33).

sStrictly speaking, the abscissa in Figure 9.3-3 should be 8,b or 8:b instead of b and
the space-charge reduction factor R should be computed separately for each space-charge
wave. However, since g, < 8., little error is introduced by using 8.b for this com-
putation.
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The output cavity is placed a quarter-plasma-wavelength away, and the rf
convection current induces current in the cavity. Let us adjust the loading
of the output cavity so that this induced current produces an output gap
voltage given by
T W . T w T

—-A COS(wt - 5 "o—q) =A s1n(wt — Q "u—q - é) (93-42)
Note that this requires simply a conductance of proper value for the
equivalent circuit of the output cavity and load. The velocity and current-
density variations produced by this second gap voltage alone may be
obtained from Equations (9.3-31) and (9.3-33) by replacing wt by

e _ T
@ 2wy 2
and B2 by
Bz — 3
One obtains after simplification:
Uy = —%u,,M % sin Bz cos(Bez — wi) (9.3-43)
and
1, 0, A .
Jy = —=J —M=+ cos Bz sin(Bz — wt) (9.3-44)
2 %0y V,

In the region beyond the output cavity the modulation produced is the
superposition of the variations produced by the two gap voltages. When
Equations (9.3-31) and (9.3-43) are added and simplified, one obtains

Uy = —%u,,M {—/1; sin(B,2 — wt) (9.3-45)
Similarly, Equations (9.3-33) and (9.3-44) are added to give
1, w, A .
Js = —§J °w_,,M V. sin(B,z — wt) (9.3-46)
Comparing these results with Equations (9.3-38) and (9.3-39), we see that
we have obtained purely a slow space-charge wave, whose amplitude is

twice as large as that of either space-charge wave in the drift region be-
tween cavities.

9.4 Multicavity Klystron Amplifiers

Most klystron amplifiers are high-power tubes wherein the rf space-
charge forces are quite important. Therefore, it is necessary to use the
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space-charge wave theory developed in the previous section to evaluate
properly the performance characteristics of these tubes. Let us first con-
gider these relations as they apply to the two-cavity klystron amplifier of
Figure 9-2.

The rf velocity and current-density variations between the input and
output cavities are as shown in Figure 9.3-4. The output cavity is placed
at the point where the rf current modulation is a maximum, that is, at
Bz = w/2. For simplicity, the two cavities are assumed to be identical.
From Equation (9.3-33) the magnitude of the rf convection current at the
output cavity is given by

, 1, w,, A
l 12 l = §Iow—quo (94-1)
From the discussion given in Section 9.1(c), the magnitude of the current
induced into the output cavity is equal to'®
_ o1 w, A
|I:] = M || = 2I,,qu V. (9.4-2)
The equivalent circuit of the output cavity is given in Figure 9.1-7, The
magnitude of the impedance of a parallel circuit of this type can be written
asll

1

| Zo| = (9.4-3)

where

Gy is the total shunt conductance

Q. is the hot loaded @ of the cavity

fo is the resonart frequency

Af is the departure of the operating frequency from f,

For the output circuit,

GT = Gc + g + GL (9.4-4)
where the symbols are defined in Figure 9.1-7. The output cavity is
assumed matched to the load for maximum power transfer, that is,

GrL=G.+y¢g (9.4-5)
0The results of section 9.1(c) are applicable under the assumption that w, K w
and the output gap is short. Under these conditions, the convection current may be

written as in Equation (9.1-25).
uReference 9.5.
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The power delivered to the load is therefore given by
Pout = %[12|2[Z2I2GL
1 (Io)z(w)2M4A2 1
===l=)l— (9.4-6)
2
82\Vo/ \wa) Gan g 4sz(?f)

o

where G is defined in terms of the hot unloaded @ of the cavities;
Gr=G,+g (9.4-7)

The subscript ch is used here to designate “(unloaded) cavity hot.” The
input power is the power delivered to the input cavity by the source. From
Figure 9.1-8, we obtain

Pin = %AzGch (9.4—8)
The power gain is given by the ratio of Poyt to Pin:

power gain = M(ﬂ)x&)z—l— ! (9.4-9)
(2-cav. klystron) ~ 16\wa/ \Vo/ Ger® 14+ 4le(?_f)2

Let us examine the gain expression in detail. The last factor determines
approximately the frequency dependence of the gain. The power is reduced
to one half when Af/f, = 1/2Q,, so that the half-power bandwidth is given
by

half-power bandwidth = £,/Q, (9.4-10)

Thus the bandwidth varies inversely with the loaded @ of the output
cavity. However, by virtue of the term 1/G.:2, the power gain is pro-
portional to the square of the cavity @’s. Therefore it is possible to trade
gain for bandwidth by adjusting the cavity @’s. Normally, two-cavity
klystrons are designed for maximum cavity €’s, obtaining maximum gain
and efficiency and accepting whatever bandwidth is produced. Thus, the
klystron amplifier is inherently a narrow-band device.

From Equations (9.3-23) and (9.3-30) we have the following proportion-
ality:

qu X p, &C

IO

N (9.4-11)
Consequently, the term (w/wg)? (I,/V,)?in Equation (9.4-7) is proportional
to I,/V,*2. This means that the power gain given by Equation (9.4-9)
is proportional to the beam perveance, as defined in Section 4.5. Thus
high perveance electron guns are needed in order to achieve high gain.
Gains of 10 db or so are often obtained with two-cavity tubes.
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One way of achieving higher overall gain is to connect several two-
cavity amplifier tubes, in series, each tube providing approximately 10
db of gain. The power gain of two identical tubes in series is given by
squaring the right-hand side of Equation (9.4-9),

. Ms(w>4(l.,)4 1 1
powergain = —A — |7 ) >—F———— 55 (9.4-12)
(@ Klystrons)  Z0\ea/ AVe/ Gu [1 + 4Qz2(%)2]2

where it is assumed that input and output ports are all matched to their
transmission lines. A power gain of 40 db might be achieved by connect-
ing four 10-db tubes in series.

High gain is achieved in a much simpler fashion using the multicavity
klystron amplifier. A three-cavity klystron amplifier is illustrated in Figure
9.4-1. The construction of this tube is similar to the two-cavity amplifier,
differing solely in the number of cavities. The tube functions in the follow-
ing manner. The input signal impresses velocity modulation on the beam
at the input cavity gap. The second cavity is placed a quarter of a plasma
wavelength away at the position of maximum rf convection current modu-
lation. The induced current in this cavity produces a voltage across its gap.

INPUT INTERMEDIATE OQUTPUT
AVITY

CAVITY CAV CAVITY
L J L |—J Ij:‘ COLLECTOR

ELECTRON
GUN

C_
=

Vo
AIF—t

T nr

INPUT OUTPUT
SIGNAL SIGNAL

Fic. 9.4-1 Three-cavity klystron amplifier.

This second cavity voltage, which is considerably larger than the first
cavity voltage, impresses velocity modulation on the beam at this point.
This velocity modulation produces current modulation at the output
cavity, a quarter-plasma-wavelength away. The rf convection current
passing through the output cavity produces an induced current in the
output cavity which causes rf power to be delivered to the load.
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Thus we see that the three-cavity klystron amplifier is very much like
two two-cavity tubes placed end-to-end. The basic difference is that the
output cavity of the first tube and the input cavity of the second tube are
combined into one intermediate cavity in the three-cavity tube.

Let us carry out a simplified analysis of the three-cavity amplifier,
Assume that all three cavities are identical; that is, all have the same
unloaded @ and beam-coupling coefficient. The intermediate cavity is not
externally loaded, but the input and output cavities are matched to their
transmission lines.

If A is the magnitude of the input-cavity-gap voltage, the magnitude of
the rf convection current injected into the intermediate cavity gap is given
by Equation (9.4-1), as for the output cavity in the two-cavity tube. The
induced current in the intermediate cavity is given by Equation (9.4-2).
The magnitude of the gap voltage produced by this current is given by

1w I, M?A 1

2w, Vo Gan \/:W

where @, is the hot unloaded @ of the cavity. This voltage produces a
velocity modulation on the beam, which is converted into an rf convection
current at the output cavity of a magnitude given by Equation (9.4-1),
with A replaced by | V|, that is

o= 2) () e 7 +41Qu2(%)_,)2 (0414

o

| Vol = (9.4-13)

The current induced in the output cavity is M times this value. The power
delivered to a matched load is given by

M2 2 1

8Ga o 40 (ff)

which, together with the expression for ||, becomes

Py = (9.4-15)

Pos = 155(2) () s - 4Ql Ny +. 45 e 9410

The input power is given by Equation (9.4-8), so that the gain is

power gain = Aﬁ(i)4<&)4 1 1 1
(3-cav. klystron)  0%\wd/ \Vo/ Gus | + 4Q, (?f) 1+ 4Q; ( ff)2
(9.4-17)
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Comparing this expression with Equation (9.4-12), which gives the gain
of two two-cavity tubes in cascade, we note that the three-cavity tube has
four times as much power gain at midband. However, we note that it also
has less bandwidth by virtue of the fact that Qu = 2Q:;. If we were to
Joad the intermediate cavity by an external load so as to obtain @, instead of
Q. for this cavity, the two expressions for gain would be identical. For
applications where bandwidth is not important, the higher gain made pos-
sible by using an unloaded intermediate cavity is a distinet advantage.

Still higher gain may be obtained by adding additional intermediate
cavities. Multicavity klystrons with as many as seven cavities are com-
mercially available, although the most frequently used number of cavities
is four. Each of the intermediate cavities functions in the same manner as
in the three-cavity amplifier. Gains of greater than 60 db are obtained when
the cavities are synchronously tuned, that is, all tuned to the same fre-
quency. However, often multicavity klystrons are operated with their
cavities stagger-tuned so as to obtain greater bandwidth at some reduction
in gain. This is analogous to the well-known design of wide-band IF
amplifiers, wherein each stage is tuned to a slightly different frequency so as
to improve the overall gain-bandwidth product. High-power klystron
amplifiers with 40 to 50 db of gain and bandwidths equal to several per cent
of the midband frequency are commercially available.

In high-power klystrons the cavity grids are omitted, since they would
burn up due to beam interception. The beam-coupling coefficient in this
case is given by a more complicated expression than Equation (9.1-10),
but otherwise the interaction is unchanged.

Figure 9.4-2 shows two photographs of the Varian Associates VA-849,”
which produces an output power of 24 kw CW (continuous wave). A cross-
sectional drawing of the tube is shown in Figure 9.4-3. The tube can be
purchased with cavities tuned to operate at any center frequency in the
range 7125 to 8500 Me. It is about 45 cm long and weighs 14 pounds.
Figure 9.4-2(b) shows the tube in place in its electromagnet. The magnet
weighs 200 pounds and dissipates a power of 1520 watts. It provides the
axial de magnetic field for focusing the beam.

The operating characteristics of the VA-849 are given in Table 9.4-1.
The tube has four cavities, each with a cold unloaded Q. of about 5000.
Data are presented in the table for the synchronously tuned situation and
also for the case when the third cavity has its resonant frequency tuned
higher. The cavity gaps are equally spaced by a distance corresponding to
approximately one ninth of a plasma wavelength. This spacing, rather

12Reference 9.6.
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than a quarter-plasma wavelength, is used in order to increase the band-
width and efficiency of the tube. The data given in Table 9.4-1 demonstrate

TaBLE 9.4-1. VA-849 OPERATING CHARACTERISTICS

Frequency range, Me................... 7125-8500

Tuning range, Me...................... 60

Beam voltage, kv...................... 23

Beam current, amps.................... 2.7

Perveance, amp fvolt¥2.................. 0.77 X 10~

Beam diameter, mm.................... 2.8

Synchronously Third Cavity
Tuned Detuned

Saturated power output, kw............. 18 24
Drive power, watt...................... .08 1
Gain,db...........o o 54 43
Bandwidth (3db), Me.................. 18 30
Electronic efficiency, %................. 29 38

that judicious staggering of the cavity resonant frequencies not only in-
creases the bandwidth but also increases the electronic efficiency, where
electronic efficiency is defined as the ratio of rf output power to the de
beam power. The reason for this increase is beyond the scope of this text,
but it is an extremely important attribute of the multicavity klystron
amplifier. The collector is operated at the same voltage as the cavities and
drift regions.

In summary, klystron amplifiers are characterized by high gain, very
good efficiency, and freedom from oscillations. On the other hand, their
bandwidths are relatively small. In addition, the phase shift through the
tube is directly related to the beam velocity; thus, high regulation and low
ripple are required in the beam voltage power supply to avoid undesirable
phase-sghift variations.

PROBLEMS

9.1 It is proposed to construct a two-cavity klystron amplifier which will amplify
a L-volt, 1000 eps signal. The input signal is applied directly to the grids of the input
cavity to modulate a 100 electron volt electron beam. Explain why such a tube
would be impracticable.

9.2 A two-cavity klystron is to be designed to operate as a harmonic generator.
The distance between cavities may be varied so as to optimize the induced current
for the desired harmonic. Calculate the magnitudes of the harmonic currents in-
duced in the output cavity for second, third, and fourth harmonic operation. Com-
pare these values with the magnitude of the fundamental induced current used for
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two-cavity amplifier interaction. The cavity gap dimensions remain fixed; the gap
transit angle is 7/2 radians for the fundamental frequency.

Ans.: I/I, = 0.581, I,/I, = 0.248, I,/I, = 0.

9.3 The primary beam current passing through the cavity of a reflex klystron is
I, amps. If the tube is operating in the 1§ mode and generating power at the hot
resonant frequency f, of the cavity (i.e., the resonant frequency when beam loading
is included), show that the average amount of charge present in the region between
the cavity gap and the repeller is given by —71 ,/4f..

9.4 The repeller electrode of a particular reflex klystron is planar and parallel
to the grids of the resonant cavity, so that the electrons between the gap and the
repeller experience a uniform retarding field. Voltages are applied as in Figure
9.2-1. The voltage Vg, is such that the electron transit angle 6, is equal to (n + $)
2. .

(a) Show that if an incremental voltage AV, is added to the voltage Vg,, the

incremental change in transit angle is given by

Aw AVg,
A6 = 00( Wo - Vv + VRo)

(b) Using Figure 9.2-4, show that A is also given by

A9 = —2Q1A—w

Wo

(c) Show that if Q; is large compared with 6,,
= 1% 3, VR
B = +Ql(n + A)WVO + VRo

9.5 Does the plasma transit angle 8,L between cavities vary with frequency?
Here L is taken to be the distance between cavities. Explain.

9.6 An electron beam, confined to flow in the 2 direction by an infinite magnetic
field, completely fills a perfectly conducting metal cylinder. 8b = 8.2 = 1. Space-
charge waves exist on this beam as given by Equations (9.3-31) and (9.3-33). Ata
point where the ac component of convection current is zero (i.e., at 8,z = nm), the
diameter of the metal cylinder is abruptly doubled. Assume that the dc beam veloc-
ity remains unchanged through this discontinuity. At the discontinuity, con-
servation of kinetic energy dictates continuity of the ac velocity, and the ac con-
vection current is always continuous at a discontinuity where there is no beam
interception.

Find the ratios of the maximum values of ac velocity and convection current of
the second drift region to the corresponding quantities of the first. Use Figure
9.3-3 to determine the space-charge reduction factors. Ans.: 1.0, 0.7.

9.7 A pure slow space-charge wave results in the beam beyond the output cavity
when the output gap voltage is given by Equation (9.3-42).
(a) What is the value of output circuit conductance which results in this voltage?
(b) Show that a negative conductance of the same value results in a pure fast
space-charge wave beyond the output cavity.
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These results demonstrate that a slow space-charge wave is excited by extracting
rf energy from an electron beam, whereas a fast space-charge wave is excited by
adding rf energy to an electron beam.

9.8 A three-cavity klystron amplifier is designed to operate at a midband fre-
quency of 9 Ge. Assume gridded gaps of 1.27-mm separation and that cavity losses
are negligible. The beam voltage is 5 kv, and the beam current is 1 amp. The beam
diameter is 5.08 mm, and the space-charge reduction factor R is equal to 0.6.

(a) Show that the midband gain is equal to 69.3 db.

(b) What is the distance between cavity gaps?

9.9 The gain-bandwidth product of an amplifier is defined as the product of the
midband voltage gain and the half-power bandwidth. In the case of a klystron
amplifier, the voltage gain may be taken as the square root of the power gain.

(a) Obtain an expression for the gain-bandwidth product of two two-cavity
klystron amplifiers in series from Equation (9.4-12).

(b) Obtain an expression for the gain-bandwidth product of the three-cavity
klystron amplifier from Equation (9.4-17), and compare with the result
for part (a).

9.10 Derive an expression for the power gain of a four-cavity klystron amplifier.
All cavities are spaced a quarter-plasma wavelength apart. The two intermediate
cavities have no external loading, but the input and output cavities are matched to
the external circuits for maximum power transfer.

9.11 A two-cavity klystron amplifier is made into an oscillator by feeding back
some of the power from the output cavity into the input cavity. The feedback
factor (the ratio of input-cavity-gap voltage to output-cavity-gap voltage) is
De~i%, where D and ¢ are real numbers varied to change the frequency of oscillation.
Neglect any cavity loading caused by the feedback path. The load is matched to the
output cavity for maximum power transfer. The spacing between cavities is
assumed to be a quarter-plasma wavelength for all frequencies of interest.

(a) Sketch equivalent circuits for both cavities, labeling voltages, currents and

impedances in the conventional manner.

(b) Using the space-charge wave equations, find the ratio of the phasors rep-

resenting the input-gap voltage and the current induced in the output cavity.

(¢) From the equivalent circuit and the results of part (b), find the ratio of the

phasors representing the two cavity-gap voltages and equate this to the
ratio given by the feedback factor.

(d) Taking the real and imaginary parts of the result of part (c), obtain two

equations relating w, ¢, and D.
(e) Eliminate D between the latter two equations and obtain ¢ as a function of
w, wg, and the cavity parameters.

REFERENCES

Three references on klystron principles and reflex klystrons are:
9a. K. R. Spangenberg, Vacuum Tubes, Chapter 17, McGraw-Hill Book Co., Inc.,
New York, 1948.
9b. J. C. Slater, Microwave Electronics, Chapter 10, D. Van Nostrand Co., Inec.,
Princeton, N. J., 1950,



348 PRINCIPLES OF ELECTRON TUBES

9c. W. W. Harman, Electronic Motion, Chapter 7, McGraw-Hill Book Co., Inc.,
New York, 1953.

9d. A. H. W. Beck, ‘“Velocity-Modulated Thermionic Tubes,” Cambridge Uni-
versity Press, Cambridge, England, 1948.

Three references on space-charge waves are:
9e. A. H. W. Beck, Space-Charge Waves and Slow Electromagnetic Waves, Chapters
4 and 6, Pergamon Press, Inc., New York, 1958.
9f. R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes, Chapter 9,
D. Van Nostrand Co., Inc., Princeton N. J., 1960.
9g. W. J. Kleen, “Electronics of Microwave Tubes,” Chapter 11, Academic Press,
Inc., New York, 1958.

Other references covering specific items discussed in the chapter are:

9.1 E. Jahnke and F. Emde, Tables of Functions with Formulae and Curves, Dover
Publications, Inc., New York, 1945.

9.2 E. L. Ginzton, Microwave Measurements, Chapter 9, McGraw-Hill Book Co.,
Inc., New York, 1957.

9.3 G. M. Branch and T. G. Mihran, “Plasma Frequency Reduction Factors in
Electron Beams,” Trans. IRE ED-2, 3-11, April, 1955.

9.4 S. E. Webber, ‘“Ballistic Analysis of a Two-Cavity Finite Beam Klystron,”
Trans. IRE ED-5, 98-108, April, 1958.

9.5 Reference Data for Radio Engineers, 4th Ed., International Telephone and
Telegraph Corp., p. 242, 1956.

9.6 E. McCune, I. Maltzer, and L. T. Zitelli, “A 20 Kw CW X-Band Klystron
Amplifier,” Microwave Journal IV, 74-78, August, 1961.



