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P A R T A

Process Capability Studies

This part of the Handbook covers the theory and mechanics of the Process Capability Study. It
starts with the selection of a problem to work on. The problem is translated into statistical
terms. The problem is theii solved statistically by following a definite set of procedures. Finally,
the solution is translated back into the original terms.
The Process Capability Study is a basic technique for analyzing data. It can be used for any
type of data obtained from a production process. It can be made by an engineer, a supervisor
or anyone else having responsibility for the job. Primarily, however, the Process Capability Study
is a research technique and, as such, it is particularly important in all fields of Engineering.
Process Capability Studies are also the foundation of all shop applications of quality control, and
many studies are made jointly by Quality Control Teams.
An example of a Process Capability Study is given on pages 66-72.
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A - 1 T H E S C I E N T I F I C
F O U N D A T I O N O F A P R O C E S S
C A P A B I L I T Y S T U D Y

A - 1 . 1 D e fi n i t i o n s a n d t e r m s

P r o c e s s

The term "process" refers to any system of
causes; any combination of conditions which
work together to produce a given result. While
it often refers to the combination of men, ma
terials, machines and methods used to manu
facture a given product, it is also capable of
taking on other meanings as explained on
pages 3-4. The process to be studied may
be as simple as the motion of a hand about the
wrist. It may be as complex as the complete
set of operations in the plant.

Process capability
The term "process capability" refers to the

normal behavior of a process when operating
in a state of statistical control; the predictable
series of effects produced by a process when al
lowed to operate without interference from out
side causes. In manufacturing terminology,
process capability refers to the inherent ability
of the process to turn out similar parts; the

b e s t d i s t r i b u t i o n t h a t c a n b e m a i n t a i n e d i n
statistical control for a sustained period of time
under a given set of conditions.

Process capability may be expressed as per
c e n t d e f e c t i v e o r a s a d i s t r i b u t i o n . I n t h e l a t
ter case it refers to a single distribution with an
irreducible spread (where "irreducible" means
not reducible economically).

The "capability" of a process is not the same
thing as its "performance," since performance
may include all sorts of unnecessary variables
and undesirable disturbances in the cause sys
tem. Capability means the natural or undis
turbed performance after extraneous influences
are eliminated. This is determined by plotting
d a t a o n a c o n t r o l c h a r t .

Process capability study

A "process capability study" is a scientific
systematic procedure for determining the
capability of a process by means of control
charts, and if necessary changing the process
to obtain a better capability. This procedure is
continued as long as may be necessary until
the problem which prompted the study is
solved. A process capability study is some
times described as "an industrial investigation
whereby demonstrably true answers are found
for one limited question after another until
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enough answers are found to make further ques
tions unnecessary." In any case the term
"process capability study" implies the solution
of problems.

A-1.2 Scope of this technique
The field of application for process capability

studies is very wide. They can be applied to
almost any problem in Management, Engineer
ing, Manufacturing or Inspection. The prob
lems in these areas can ordinarily be reduced to
those involving quality, cost, the need for new
knowledge or information, the establishment
of standards or estimates, new development
a n d r e s e a r c h .

The following is a list of typical problems
which can be solved through the proper appli
cation of process capability studies. The list
is included here to indicate the broad scope of
this technique. The items on this list are not
intended to be mutually exclusive, but rather
to show the many different forms in which
basically similar problems may present them
selves. All of these problems are related es
sentially to the nature and behavior of a distri
bution. They can be solved through process
capability studies because these studies provide
a method for analyzing and changing distribu
t i o n s .

(1) Quality
• Too many defects leaving Operating.
• Too many defects leaving Inspection.
• Product unstable or drifting.
• Wrong distribution (in case of dis

tribution requirements).
• Bad piece parts or material coming

into the assembly line.

(2) Cost
• Too much inspection.
• Too much adjusting.
• Too much repair or rework.
• Too much scrap.
• Excess i ve merchand i se l osses .
• Trouble in meeting schedules.
• Low yield.

(3) Information
The need t o :

• Trace the causes o f t roub le .
• Find why things happen.

• D i s c o v e r c o r r e l a t i o n s .
• Find how the early characteristics

affect the end product.
• Find which dimensions are important.
• Obtain new knowledge about materi

als, methods, testing equipment, type
of product.

• Get reliable information from pilot
r u n s .

• Find the capability of new tools,
methods, machines.

• Compare designs, tools, assembly
m e t h o d s .

• Study the effect of engineering
changes.

• Study the effect of going over to a new
design.

• Obtain continuity on intermittent
operations.

• Make sense out of engineering data.
• Interpret the results of engineering

experiments.
• Find the degree of training of opera

t o r s ,
• Test for significant differences.
• D e t e c t t r e n d s .
• D e t e r m i n e w h e t h e r c o n d i t i o n s a r e

c o n s t a n t .
• C h e c k o n e r r o r o f m e a s u r e m e n t .
• Find assignable causes.
• Keep from being deceived by statisti

c a l fl u c t u a t i o n s .

(4) Standards
• Estimates to be used for engineering

p u r p o s e s :

Wage incentives.
S t a n d a r d c o s t s .
Normal amount of inspection.
N o r m a l l o s s e s .
Normal yields.
Normal capacity.
Normal amount of sorting

by Operating.
Overall capability.
Machine capability.
N a t u r a l t o l e r a n c e s .

• Specifications of all kinds.
• Reliability of test sets, gages, and

o t h e r s t a n d a r d s .
• M a i n t e n a n c e s c h e d u l e s .
• Engineering responsibility vs. shop re

sponsibility, etc.
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(5) New development
• New products.
• N e w m e t h o d s .
• Cost reduction.
• A u t o m a t i o n .
• Machine and tool design.
• Purchase of new types of machines,

test sets, etc.
• Elimination of difficult or expensive

operations.

A-1.3 The scientific steps in experiment
A process capability study follows the method

of scientific research. This method may be
said to consist of four steps, as follows:

(1) Experiment.
(2) Hypothesis.
(3) Test of hypothesis.
(4) Further experiment.

The experiment consists of collecting observa
tions from the process at several different
points in time.

The hypothesis is that the observations, if
they came from a stable process, should exhibit
only natural fluctuations.

The hypothesis is tested by making a control
chart and testing its pattern for naturalness.
If the pattern is unnatural some "assignable
cause" was interfering with the normal process.
The cause is identified by proper study of the
pattern, and its effect on the problem is traced.

Finally, depending on what the patterns
show, it may be necessary to change the proc
ess, collect more data, revise the specification,
or in some other way perform a further experi
m e n t

Figure 51 shows the four steps in a process
capability study expressed in slightly different
f . A r m s

Repetition of these four steps
If the person making the study finds a com

plete solution at the end of Step 4, he concludes
the study there. Frequently, however, he
finds that the initial study is merely one step in
arriving at a solution. In that case Step 4 be
comes the first step in a second study.

An example of this is given on pages 66-72.

A - 2 O B T A I N I N G T H E D A T A

Some processes can be studied by obtaining
data on the process directly: for example,
variation in a test set, or changes in the heat
treating temperature in an oven. Others can be
studied by observing the effect of the process
on the product: for example, the diameter of
a piece part or the presence of defects in an
assembly. In either case we begin a process
capability study by obtaining a series of
measurements or by accumulating percent de
f e c t i v e d a t a .

In any case where there is a choice between
variables and attributes measurements, it is
worth going to considerable trouble to devise
some method of obtaining actual readings.
This will make it possible to take advantage of
the great sensitivity of the X and R chart. In
some cases where it is not possible to obtain
true variables measurements, it may be possible
to get "semi-variables" measurements as ex
plained in paragraph A-2.5.

A-2.1 Where and how to use var iables
c o n t r o l c h a r t s

An X and R chart requires less data for the
same amount of information than any other
control chart. This is the type of chart to use
when it is difficult or expensive to take measure
ments, where the test is destructive, or where it
i s d e s i r e d t o s e t t h e m a x i m u m a m o u n t o f i n -

Scientific Experimentation
1. Experiment.
2. Hypothesis.
3. Test of hypothesis.
4 . F u r t h e r e x n e r i m e n t .

Process Capability Study
1. Collect data from the process.
2. Plot statistical patterns.
3. Interpret the patterns.
4. Do what the patterns tell you until you reach

t h e n r n e e s R f » n . n n . h i l i t . v

F k . 5 1 . T h e f o u r s t e o s i n a o r o c e s s c a o a b i l i t v s t u d v.



formation with the least amount of effort. In
addition, X and R charts have two advantages
which are not possessed by any others:

(1) Different kinds of trouble show up in dif
ferent ways on these charts.

For example, a_ wrong machine setting
shows up on the X chart, while a machine
in need of repair shows up on the R chart.
In a similar way, various causes of trouble
can be distinguished in the case of as
sembly operatior^, chemical processing,
and so on. The X and R chart is the best
one to use for getting answers to questions
like these: Why aren't we getting con
sistent results? What could be causing so
much trouble at 450 cycles? What can be
done to improve this process and make it
behave better? In general, the newer the
job or the more there is to learn about a
given type of product, the more it will
be necessary to use X and R charts.

(2) X and R charts make it possible to study
the process without regard to the specifica
t i o n .

This is not true of a p-chart. A p-chart
starts with the specification and simply
records fa i l u res to meet i t .

X and R charts start with the process
itself and give an independent picture of
what the process can do. Afterward the
process may be compared with the speci
fication or not, depending on the problem.
For this reason, X and R charts can be
used to obtain changes in specifications
and bring about the establishment of
m o r e r e a l i s t i c l i m i t s . T h e m o r e c a s e s w e
have where it is suspected that the speci
fications may need to be changed, the more
it will be necessary to use X and R charts.

X and R charts are at their best when used at
early operations, close to the causes that may
affect later results. Use X and R charts on in
dividual characteristics, operators, machines,
machine setters, shifts, sources of voltage sup
ply, etc. These charts are much less effective
when used at the end of the line on final tests.

A - 2 . 2 W h e r e a n d h o w t o u s e a t t r i b u t e s
c o n t r o l c h a r t s

A p-chart requires larger samples than an X

and R chart. It is less versatile and less sensi
tive than an X and R chart for the following
r e a s o n s :

• The p-chart cannot tel l whether
trouble is caused by lack of control of
the average value of a characteristic;
or by the fact that it is located too
close to a specification; or by an un
controlled process spread; or by a
spread that is controlled but is too
wide for the specification.

• The p-chart cannot warn of shifts or
trends in the process unless those
trends have proceeded so far that they
have actually resulted in defectives.

On the other hand, a p-chart often has the
advantage of using records which are already
available in the shop. It is generally necessary
to obtain special data for an X and R chart.

One common use for p-charts is to study an
entire assembly process by means of an overall
chart. The p-chart can be made to cover all
defects and all characteristics, combined in a
single percentage. This kind of chart can be a
valuable capability study in itself, and will also
provide a good measure of the effectiveness of
changes, corrections or improvements which
have been made as a resu l t o f o ther s tud ies .

When used alone, however, p-charts on the
overall process are often difficult to interpret.
The causes for unnatural patterns may be so
deeply hidden that it is not possible to find
t h e m i n t h e o v e r a l l d a t a . O n e o f t h e s t a n d a r d

ways of interpreting p-charts is to break them
d o w n i n t o i n d i v i d u a l s o u r c e s o r i n d i v i d u a l d e
fects. If interpretation is still difficult, use
an X and R chart.

p-Charts may be used for:

(1) Characteristics on which it is difficult or
impractical to obtain variables measure
m e n t s .

(2) Studies of defects produced by machines
or operators which are directly under the
machine setter's or operator's control.

(3) Direct studies of the amount of drop
outs, shrinkage or scrap at specific opera
t i o n s .

Collect p-chart data, where possible, on the
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work of individual operators or individual
m a c h i n e s .

In this Handbook, unless otherwise stated,
whatever is said about p-charts should be taken
to apply also to np-charts, c-charts and u-
c h a r t s .

A-2.3 Precautions in obtaining the
m e a s u r e m e n t s

In making a process capability study it is
necessary to plan carefully for the proper col
lection of data. The following rules are based
on the experience of many engineers.

(1) Take the data, if possible, in the same
time-sequence in which the product is
m a d e .

(2) Arrange to take data on the product as
made rather than after a screening or ad
justing operation (unless the object of
study is to be the screening or adjusting.)
In the latter case you may wish to take
data both before and after the screening or
adjusting.

(3) Decide in advance on the proper tech
nique for making the measurements.

(4) Decide how many measurements should
be taken on each part and exactly where
the measurements should be made.

(5) See that the proper identification is re
corded in addition to the actual measure
ments. For example, time of day, number
of machine, name of operator, number of
test set, number of gage, etc. See para
graph A-2.9.

(6) Instruct the person taking the measure
m e n t s t o m a k e a n o t e o f a l l k n o w n

changes in the process during the period of
study.

(7) If the data are to be taken on product
and there is more than one source of prod
uct (for example, more than one machine,
operator or test set) decide whether to
cover all of these sources or only one or
t w o .

(8) If the data are to be taken on processing
conditions and there is more than one set
of conditions, decide whether to cover all
or only one or two.

A - 2 . 4 E r r o r o f m e a s u r e m e n t
It is not possible to obtain the full advan

tages of the process capability technique unless
t h e m e a s u r e m e n t s a r e r e l i a b l e t o s t a r t w i t h .
This means that the measurements must be
taken accurately, and at a point that is mean
ingful in its bearing on the problem being
studied. It is very common in capability
studies to find patterns that are seriously out of
control when the first readings are plotted.
Often this turns out to be largely the error or
instability of the measurements rather than
the actual condition of the product.

Remember that every observation on a piece
of product is a composite of two different ele
m e n t s . O n e i s t h e a c t u a l v a l u e o f t h e c h a r a c

teristic; the other is the measurement of it.
If the measurement is contributing more vari
ability than the pieces of product, it will be dif
ficult to detect some of the cause and effect re
lationships which may be important in solving
the problem.

In making a capability study either obtain
the measurements yourself or make sure that
they are taken by someone who is properly in
structed and in whom you have confidence. If
there is doubt as to the adequacy of the
method of measurement, it may be necessary
to make a study of the measuring method itself
before attempting to study the variations in the
product.

It is possible to check (a) the accuracy of the
measurements as compared to a fixed standard,
and (b) their precision or reproducibility. For
information on this see pages 84-91.

A - 2 . 5 S e m i - v a r i a b l e s m e a s u r e m e n t s

In cases where it would be desirable to have
variables measurements but the characteristic
is one which is ordinarily checked by attributes
only, it is often possible to obtain "semi-vari
ables" measurements by setting up a scale
which is capable of showing degree, and rank
ing the units in accordance with this scale. For
example, in a problem involving burrs it might
be possible to use the following:

S ize o f Bur r Ar t i fic ia l Number
N o b u r r 0
S m a l l b u r r 1
M e d i u m b u r r 2

L a r g e b u r r 3
V e r y l a r g e b u r r 4
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The lumbers 0, 1, 2, 3 and 4 can be used to
make X and R charts like any ordinary meas
u r e m e n t s .

Before attempting to assign numbers to the
units, establish standards to make your judg
ment as consistent as possible. The "error of
measurement " in semi -var iab les da ta can be re
duced by obtaining separate observations or
rankings from a number of independent ob
s e r v e r s . T h e e r r o r o f m e a s u r e m e n t c a n b e
evaluated in the same way as any other error of
m e a s u r e m e n t .

A-2.6 ' 'Work sampling' ' measurements
It is possible to make process capability

studies on such problems as the required fre
quency of machine settings or housekeeping
activities in the shop, the ways in which a group
of clerical workers or engineers spend their
time, whether the shop is properly performing
the specified chemical, washing, degreasing or
heat treating operations, and similar situations
where we do not ordinarily think of taking
n u m e r i c a l m e a s u r e m e n t s . To d o t h i s w e m a k e
use of a special data-collecting technique which
is known as "work sampling." This technique
consists of the following:

(1) Prepare a check list of all the activities
which it is desired to study. The list may
include (a) desirable activities which we
wish to encourage or on which we wish to
set standards, and (6) undesirable activi
ties which we wish to study for the purpose
of reducing them or eliminating them from
the process. It may also include activities
which are essential but non-productive,
such as waiting for work or changing the
water in a wash tank. The key to the
success of "work sampling" studies is the
preparation of the check list.

(2) Have an observer go around at random
i n t e r v a l s a n d r e c o r d i n s t a n t a n e o u s o b
servations of the activity being per
formed at that moment. The activity is
recorded by making a tally mark on the
check l ist. Randomness can be assured
by havipg the observer draw a card from a
shuffled deck of cards to determine the
t ime at which he should make the observa

tion, and a second card to determine the
area or person to be observed. The num-

ber and frequency of the observations
which must be taken depends on the
nature of the process and the purpose of
the process capability study.

The data obtained in this manner consist of a
number of tally marks which constitute a "sam
ple." The "sample size" is the total number
of observations. Attributes data for p-charts
or other purposes are obtained by taking the
percentage of observations recorded for a
given activity or group of activities as compared
with the total number of observations in the
sample.

Work sampling measurements can be used
for process capability studies, shop control
charts, or estimates based on samples. For
f u r t h e r i n f o r m a t i o n o n t h i s m e t h o d o f o b t a i n

ing data see References No. 1 and 22.

A-2.7 Amount of data required for a
process capability study

X a n d R c h a r t s

The process capability study should cover at
least three different periods in time. A suitable
amount of data to start with would be as fol
l o w s :

F i r s t p e r i o d 5 0 m e a s u r e m e n t s
Second period 25 measurements
Th i rd pe r i od 25 measu remen ts

This is a total of 100 measurements on the
process.

p-Charts
Again we want the study to cover three or

more periods in time. A suitable amount of
data would consist of 20 to 25 samples for each
one of these periods. Each sample should
represent about 50 or 100 units checked.

Char t s f o r i nd i v i dua l measu remen ts w i t h con
trol limits based on the moving range
In this type of study we are ordinarily limited

to very little data. It is permissible to use as
few as 10 consecutive numbers, provided these
numbers cover a representative period of time.
For example, if the chart is to cover merchan
d i s e l o s s e s o r o t h e r a c c o u n t i n a fi e u r e s . t h e



study might cover a period of approximately
o n e y e a r .

Special cases
While the rules given above are safe rules to

follow, do not hesitate to use larger or smaller
amounts of data if this is necessary or con
venient. If more data are readily available, by
all means use them. On the other hand, if very
little data can be taken, it is still possible to ob
tain answers to many problems by using these
data in a capability study.

A-2.8 Selection of samples
Samples should be selected so as to minimize

all sources of variation other than the factor
being studied. This can usually be accom
plished by having each sub-group consist of
consecutive units as produced. See page
151 for further information on suitable methods
of selecting samples.

A - 2 . 9 I d e n t i fi c a t i o n o f d a t a

When collecting measurements, carefully
identify the different periods in time. Also
identify any other known changes in the source
of data, or any surrounding conditions or ele
ments in the process which might be able to
affect the results. For example: Up to a cer
tain point the data came from one location but
after that the job was moved to another; at a
certain point the design was changed; there
was a new supervisor; the job was put on
sampling inspection; the engineer decided to
use a d i f ferent furnace.

The more ways in which the data are identi
fied, the more it will be possible to learn from
the process capability study. This is one of the
first principles in control chart analysis and is
the source of much of its power. This applies
not only to process capability studies but also
to designed experiments.

A -2 .10 Po in t a t wh i ch the da ta shou ld be
c o l l e c t e d

Data may be collected at any point where the
problem is thought to exist. However, many
troubles which first become apparent in the end
product have roots which go back to the early
operations. It is often possible to save time by
studv ine the ear lv ©Dera t ions in the f i rs t o lace .

A - 3 A N A L Y Z I N G T H E D A T A

A-3.1 Scales for plotting
Scales should be chosen in such a way as to

get a readable width for the control limits. The
control limits should preferably be not less
than 1 inch and not more than 2 inches apart.
For X and R charts, try to keep the width
of the control band (that is, the distance be
tween the centerline and either^ control limit)
approximately equal for both X and R, For
p-charts which are to be compared, use the
same scale on al l charts.

A-3.2 Calculating l imits
When the data included in a capability study

cover more than one set of conditions, some
question may arise as to whether the center-
l ine and control l imi ts should be calculated
from all the data or from one portion of it only.
It is an important principle in capability studies
that in any case where there are adequate
amounts of data it does not matter which por
t i o n o f i t i s u s e d f o r c a l c u l a t i o n s . A d i f f e r e n t
selection of data may result in different control
l im i t s bu t shou ld no t r esu l t i n d i f f e ren t conc lu
sions. This can be seen in Figure 52 on page

The data plotted here might represent an
X chart, a p-chart or a chart for individual
m e a s u r e m e n t s .

In this example the pattern without control
limits is shown in Figure 52(a). If control
limits are calculated from the May data only,
the chart will look like Figure 52(b). This
chart shows that May and June are different.
May being higher. If the control limits are
based on the month of June .only, the chart
will look like Figure 52(c). This is a different
c e n t e r l i n e a n d s e t o f c o n t r o l l i m i t s b u t i t t e l l s
the same story: May is higher than June. If
the control limits are based on May and June
combined, this results in a third set of limits
but the story is still the same. This will be
true, in general, as long as there are adequate
amoun ts o f da ta on wh ich to base the ca l cu la
t i o n s .

When the data are limited, as in a designed
experiment, it is best to use all the data in calcu
lating the control limits. The data are con
sidered to be " l imi ted" i f there are less than 20
points when the chart is plotted. The smaller
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Fig. 52. Different levels of performance in May as compared with June.

the number of measurements, the less certain in fact it has come from the same system of
w e a r e a b o u t t h e a c c u r a t e l o c a t i o n o f t h e l i m i t s . c a u s e s .

A d d i t i o n o f f u r t h e r d a t a

The rules given above cover the initial calcu
lation of control limits for a capability study.
When more data are to be added, extend the
original control limits across the page and plot
the additional data against the original limits.

If you find on checking the patterns that the
additional data are significantly different from
the original data, it is proper to calculate new
control limits, if desired, for the additional
data. The new limits will make it possible to
test the later set of data to see whether it shows
control with respect to its own limits.

Do not, however, calculate new limits for ad
ditional data unless you have previously found
a significant difference. Do not consider there
is a significant difference unless there is reason
to mark x 's on the chart . I f new l imi ts are
calculated without statistical evidence that the
sets of data were different, this may easily lead
to false conclusions. Separate control limits
may make a set of data appear different when

A-3.3 What to do about f reaks

Engineers frequently wonder whether they
ought to throw away portions of the data that
appear to be "wild" or to have been caused by a
"freak." In general, it is never wise to throw
away any data in the calculations or plotting
unless there is definite knowledge that some
thing has affected that one group of readings
and no others. Ordinarily it is difficult to ob
tain such positive knowledge. If supposed
" f r e a k s " a r e e l i m i n a t e d i n t h e c a l c u l a t i o n s o r

plotting, this may destroy the very information
which might lead to solving the problem.

One exception to the above rule is a case en
countered occasionally where the "wild" read
ings are very numerous. This is sometimes
found in the early studies on new products or
designs under development. When wild read
ings are numerous they should not properly be
considered as freaks, but rather as a separate
distribution resulting from a different system
of causes. Such freaks should be separated
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f r om the res t o f t he da ta i n o rde r t o make t he
patterns interpretable. They should not, how
ever, be eliminated from the study. They
should only be plotted on a separate chart.

It need hardly be pointed out that in any
case where it is necessary to separate the freaks
in this manner, one of the immediate objects of
the capability study should be to identify the
extraneous system of causes so that the freaks
can be eliminated. See pages 162-164 for
further help in dealing with freaks.

Repeated "freaks"
If freaks tend to occur in a capability study

repeatedly, the repetition means that they are
n o t f r e a k s b u t r a t h e r t h e r e s u l t o f s o m e c a u s e

operating regularly in the process. The princi
pal rule in dealing with such freaks is: Don't
underestimate their importance and don't
e l i m i n a t e t h e m f r o m t h e d a t a .

A-3.4 Plotting the control charts
In all cases, follow the standard methods of

plotting control charts when making a process
capability study. If necessary review the ma
terial on pages 12-23.

Do not overlook the fact that the data can
be plotted in more than one way. Plotting a
chart of individual measurements or a grouped
frequency distribution may help in interpret
ing an X and R chart. Changing the scale at
the bottom of the chart (for example, to show
operations rather than time) may help in inter
preting a p-chart or c-chart.

A-3.5 Studying the patterns
Preliminary analysis of a process capability

study consists of two steps as follows:
(1) Carefully record, on the chart, all known

pertinent facts about the data as provided
in paragraphs A-2.3 and A-2.9. These
may be needed later for separating the
data according to source. Also make notes
on any surrounding conditions or elements
which might be capable of affecting the
results. Repair of a fixture, re-calibration
of a test set, or the fact that maintenance
work was performed may be vital informa
tion in securing a correct interpretation.

(2) Go over the patterns carefully and mark
x's where they belong. If instability or

other changes are indicated, determine the
type of change. (For example: cycle,
trend, gradual shift, sudden shift, erratic
fluctuation, freak, interaction.) Mark the
type of pattern on the chart near the
corresponding x's. Note also any back
ground information you may have which is
related to the type of pattern. For ex
ample : * Trend—probably tool wear.''

Be sure to include a check for stratifica
tion, stable mixture, systematic variables,
tendency for one chart to be correlated
with another. Note on the chart any back
ground information related to these pat
terns. For example: "Strat i f icat ion—
may be due to samples being associated
with bifurcated springs."

If the pattern is natural, make the calcula
tions indicated in paragraph A-3.6. If the pat
tern is not natural, follow the directions in
paragraph A-3.7.

Regardless of whether the patterns are nat
ural or unnatural, a properly conducted proc
ess capability study should give valuable in
formation. The chart will be used in different-
ways, however, depending on the naturalness or
unnaturalness of the pattern.

A-3.6 Drawing conclusions from a natural
p a t t e r n

The primary significance of a natural pat
tern is that it indicates a process which is in
statistical control. Such a process is stable
and undisturbed by extraneous causes. It
tends to repeat itself day after day and is con
sequently predictable. It is possible to deter
mine the underlying characteristics of such a
process by making calculations based on the
pattern on the control chart.

Among the calculations which may be based
on a natural pattern are the following. Do not
attempt to make any of these calculations
unless the control chart is in control:

(1) Estimate the center of the process dis
t r i b u t i o n a s X ,

(2) Estimate the shape of the process dis
tribution by making a frequency plot of
the process capability data.

(3) Estimate the spread of the process dis
tribution by making the calculations shown
on page 56.
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(4) Compare the process distribution with
the specification or other standards as
shown on pages 119-122.

(5) Estimate the percentages outside of
limits, if desired, by making the calcula
tions shown on pages 58-59.

(6) Use the centerlines on the X chart and R
chart, if desired, to calculate the effect of
overlapping tolerances.

(7) Use the centerlines if desired to set up
economic limits for shop control charts.

(8) Use the centerlines if desired to establish
standards for budgets, forecasts, wage in
centive allowances, etc.

In the case of a p-chart, estimate the capabil
ity as explained on page 59, and use the center-
line as indicated in (7) and (8) above.
Note particularly that a natural pattern is
essent ia l when we w ish to .

• Determine capability.
• Compare with standards.
• G e n e r a l i z e .
• P r e d i c t .

In the absence of a natural pattern we can ob
tain other information, but we cannot do the
four things listed above.

For further information on the meaning of a
natural pattern see pages 170-171.

A-3.7 Drawing conclusions from an
unnatura l pa t te rn

An unnatural pattern indicates a process
w h i c h i s d i s t u r b e d o r o u t o f c o n t r o l . S u c h a

process may be erratic and unpredictable. It
may or may not tend to repeat. We cannot
determine the imderlying characteristics of such
a process by making calculations from the out-
of -cont ro l data. We cannot use the out -o f -
control data to generalize or predict. We can,
however, obtain other useful information in
t h e m a n n e r s h o w n b e l o w.

(1) In a process capability study the pri
mary significance of an unnatural pattern
is the fact that important causes, capable of
exerting a large effect on the process, are
present in such a form that they are sus
ceptible to analysis and study. While
natural patterns are used mainly for set
ting standards and making estimates, un

natural patterns are used mainly for gaining
new knowledge about the process,

(2) Unnatural patterns provide information
about processing variables, process
changes, cause and effect relationships,
cost reduction possibilities, and potenti
alities for improvement. The informa
tion contained in an unnatural pattern
may be far more important, for engi
neering purposes, than the information
contained in a natural pattern.

Method of analysis
Unnatural patterns may be divided into two

general types:

(a) Relatively simple.
(b) Relatively complex.
Among the relatively simple types are the

following:

Cycles.
T r e n d s .
Sudden or gradual changes in level.
Certain types of systematic variation.

Among the relatively complex patterns are
the following:

Mixtures of all kinds, including both stable
and unstable mixtures.

F r e a k s .

Grouping or bunching.
S t r a t i fi c a t i o n .
Tendency of one chart to follow another.
I n t e r a c t i o n .

Instability.
The simple unnatural patterns can ordinarily

be interpreted by the application of technical
knowledge or shop experience. The relatively
complex patterns must usually be reduced to
one of the simple forms before they can be in
terpreted.

A-3.8 Simplification of complex patterns
G e n e r a l

The basic approach, in simplifying complex
patterns, is to separate the data according to
various sources. In many studies there is an
obvious basis for performing this separation.
For example, there may be several machines,
shifts, operators, tools, chucks, sources of
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supply, fixtures, heads, methods of assembly,
positions at different spots in an oven. In such
cases it is easy to separate the data and plot a
separate chart for each source. See Method
A b e l o w .

In other cases the method of separating the
data is not so simple. For example, a machine
may behave like more than one machine if it
is in a poor state of repair. A fixture may be
have like more than one fixture if it is poorly
anchored or has excessive play. In the same
way, an operator who is careless or inade
quately trained may behave like more than
one operator. Piece parts which are not uni
form, or which come from a mixed lot sent in
by a supplier, may behave like two kinds of
piece parts. In such cases it requires more
ingenuity to separate the data. See Method
B b e l o w.

The following methods of separating data are
used in engineering studies:

Method A. Simple breakdown.
M e t h o d B . E l i m i n a t i o n o f v a r i a b l e s .
Method C. Rearrangements of data.
Method D. Designed experiments.

A l l o f t h e s e m e t h o d s h a v e t h e s a m e b a s i c
objective. They attempt to separate the data
into significant categories in such a way that
the patterns will become simple enough to
interpret.

Method A: Simple breakdown
This method is used where some of the pos

sible sources of complexity are known or at
least suspected. The engineer proceeds as fol
l o w s :

(1) Separate the data according to known
sources, major components, etc. Plot
separate charts for each source. The
source or component whose pattern is least
stable, or whose pattern is most similar to
the original complex pattern, is the one
most l ikely to contain the important
causes. Disregard the rest of the data and
concentrate on this portion.

(2) Take the data for this least stable por
t i o n a n d b r e a k i t d o w n f u r t h e r . P l o t
separate patterns for each df the new
sources or subcomponents. Again, the
source or component with the most signifi
cant pattern is the one most likely to
contain the important causes.

(3) With each separation, the patterns be
come simpler or stand out more promi
nently. Continue this process until the
patterns become natural or until they con
sist of (a) simple shifts in level or (b)
simple trends. At this point it is possible
to make calculations as shown in para
graph A-3.10.

Suggestions on possible sources or ^'produc
tion paths'' will be found on pages 166-167,
168, 180 and 219. It will also be helpful to
study the material on control chart theory on
pages 149-151, and the explanation of the R
chart on pages 154-156. If the patterns are
still complex when separated by source, follow
t h e d i r e c t i o n s u n d e r M e t h o d B .

M e t h o d B : E l i m i n a t i o n o f v a r i a b l e s

This method is used where there is no prior
basis for separating the data. An example of
such a case is given on pages 66-71. The engi
neer proceeds as follows:

(1) The original pattern is used to discover
some variable (usually a single variable)
which needs to be el iminated. This re
quires a knowledge of control chart pat
terns and the ability to interpret these
patterns as outlined in Engineering Part
F. Study the explanations given on
pages 66-71.

(2) As soon as the first variable is discovered,
do what is necessary to eliminate this
v a r i a b l e . T h e n c o l l e c t m o r e d a t a a n d
make, in effect, a second process capability
study. The patterns in the second study
will be simpler because of the removal of
one of the large variables. See page 67.

(3) Continue this process until the patterns
become natural or until they consist of
(a) simple shifts in level or fb) simple
t r e n d s . T h e n m a k e t h e c a l c u l a t i o n s
shown in paragraph A-3.10.

This method of simplifying patterns can be
used in any situation. It may be the only
method possible if there are complicated vari
ables or many engineering unknowns.

Methods C and D: Rearrangements of data
and formal designed experiments
If the data used in the study have been
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identified in enough different ways, it may be
possible to simplify the pattern by merely
rearranging the data. An example of this is
given on pages 72-73. Correlation studies,
scatter diagrams and "trend arrangements'' of
the measurements, and formal designed ex
periments, are all methods of classifying and
rearranging the data.

These methods simplify the pattern by
arranging the data in various ways, thus
making it possible to identity certain causes.
For correlation and similar studies see pages
143-148. For designed experiments see pages
7 5 - 11 7 .

A-3.9 Checking to determine whether you
have found the rea i cause

If the causes affecting the pattern have been
properly identified, there should be an obvious
correspondence between the presence or ab
sence of the cause and subsequent changes
in pattern. It should be possible to put the
cause in or take it out at will and make the
pattern behave correspondingly. In addition,
there must be some logical engineering reason
for believing that such a condition might be the
cause. Be careful not to assume that one con
dition causes another merely because it pre
cedes the other in time.

A-3.10 Calculations from a pattern
showing oniy very simpie
s h i f t s a n d t r e n d s

If the cause of the shift or trend has been
conclusively identified, calculations may be
made from simple patterns in much the same
manner as in paragraph A-3.6. In the case of
a shift, make the calculations separately for
each distinct level. In the case of a trend, make
the calculations for one or more levels along the
slope of the trend line.

A - 4 M A K I N G A N E S T I M A T E O F
T H E P R O C E S S C A P A B I L I T Y

The capability of a process may be expressed
numerically in two different ways:

(a) as a distribution having a certain center,
shape and spread; or

(b) as a percentage outside of some specified
l i m i t .

K fi

In the first case the capability is estimated from
an X and R chart; in the second, from a p-
c h a r t .

By a simple calculation, information from the
X and R chart can also be translated into per
centages. It is not possible to work in the
opposite direction and get distribution informa
tion from a p-chart.

A-4.1 Estimating center, shape and spread
f r o m a n X a n d R c h a r t

At the conclusion of the process capability
study, you have obtained a set of controlled
patterns. From these patterns it is possible to
find the distribution that the process is capable
of producing.

• C e n t e r . T h e c e n t e r o f t h e d i s t r i b u
t i o n w i n b e t h e c e n t e r l i n e o n t h e X
chart (X).

• Shape. The shape can be judged for
most practical purposes by making a
frequency distribution of the data
which produced the controlled pat
terns. Several hundred measurements
may be necessary to give reliable
evidence about the shape.

• Spread. The spread can be calculated
by using the factors given on page
131. Proceed as follows:
(a) For a normal* distribution, esti

mate the spread of individuals as
±SR/d2. Be sure to use the da
factor (from page 131) which cor
responds to the sample size used to
o b t a i n R .

(b) For a non-normal** distribution,
estimate <t as R/dz. The distribu
tion may spread more than 3 <t on
one side and less than 3 o- on the
other side. The total spread may
be more or less than 6 a.

Note that the estimate of spread, as well as
shape, will be affected if the distribution is
s k e w e d .

A-4.2 Permanent and non-permanent
s k e w n e s s

In many processes the degree of skewness is
subject to change even when the center and
♦ See pages 131-134.

*♦ S e e n a c r e s 1 3 4 - 1 3 6 .



spread of the distribution are reasonably con
stant. If you wish to base specifications or
changes in specifications on the fact that the
distribution is skewed, be sure that there is a
good engineering reason to account for the
skewness in the first place and also for arguing
that it is a permanent feature of the process.

Some of the causes which tend to introduce
skewness and make it permanent are:

(1) Parts coming up against a positive stop.
(2) Measurements reaching the physical

limits of the material, as in strength of
w e l d s .

(3) Manual control of operations such as
grinding, where the tendency is to grind
just inside tho limits in order to minimize
w o r k .

(4) Characteristics such as eccentricity,
warpage, unbalance, runout, etc. where the
natural limit is zero.

D I S T R I B U T I O N O F E C C E N T R I C I T Y

. 0 0 5 . 0 1 0 . 0 . 0 0 5
I d e a l m e a s u r e m e n t = 0

Fig. 53. B is a better distribution than A,

In many processes a skewed distribution
is desirable. See Figure 53. Engineers should
not jump to the conclusion that properly run
processes, or processes in good control, will
h a v e " n o r m a l " d i s t r i b u t i o n s .

T h e r e a r e a l s o c e r t a i n m a t h e m a t i c a l r e a s o n s
for skewness, an example of which is the follow
ing:

Suppose we are making a product con
sisting of square pieces. We measure the
sides of a large number of squares and find
that their distribution is symmetrical.

If the sides of the squares form a sym
metrical distribution, it is obvious that the
areas of the squares cannot form a sym
metrical distribution. If we measured the
areas (or volume or weights or anything
related to the sides by a square or cubic
relationship), the distribution would evi
dently be skewed. See Figure 54.

The above causes tend to in t roduce skewness
as a permanent characteristic of the distribu
tion. In addition, the following causes may in
troduce temporary skewness:

(1) Some skewness is created artificially by
a sorting or screening operation. Such
distr ibut ions are said to be "truncated."
The truncation generally takes place at a
specified maximum or minimum limit as in
Figure 55.

(2) When skewness is associated with out-of-
control patterns on a control chart, it is
likely to be the result of a mixture of two

5 is midway between 0 and 10, but 5^
is not midway between 0^ and 10*

I 1 1 1 1 1 1 1 1 1 1 ( 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 G 7 8 9 1 0 0 1 0 2 0 3 0 4 0 5 0 0 0 7 0 8 0 9 0 1 0 0

Fig. 54. If the distribution of length is symmetrical, the distribution of area cannot be.



or more distributions. This type of skew-
ness tends to be nonpermanent and un
stable. See Figure 56.

Fig. 55. Nonpermanent skewness due to screening.

M I X E D D I S T R I B U T I O N S

/ \/ \

Fig. 56. Nonpermanent skewness due to mixture.

Occasionally skewness may be the result of
"freaks" which cause a long tail to spread out
on one side. In such cases, before deciding
whether to treat the distribution as a skewed
distribution, you must decide whether to con
sider the freaks as a regular part of the process.

A-4.3 Estimating percentages from an X
a n d R c h a r t

The percentage outside of a given limit can
be estimated from X and R charts that show
control. This requires a knowledge of the dis
tribution center, shape and spread. If you
have reason to be l i eve t he d i s t r i bu t i on i s
reasonably normal (symmetrical, not too flat on
top, and not too peaked), the percentage can
be estimated with reasonable accuracy as fol
l o w s :

(1) Estimate ''sigma prime" from the center-
line of the R chart.

Values of ^2 are given on page 131.

(2) Calculate "i" according to one of the
following formulas, depending on whether
you are interested in a maximum or
m i n i m u m l i m i t .

X — Max.

M in . - X

(3) Read the percentage outside of limits
from Table I on page 133.

Example
In a process capability study on thickness of a

core plate, R for samples of five was found to be
.0030 and X was .7512. Both patterns were in
control. The engineer felt that the distribu
tion was "reasonably normal." He calculated
sigma as follows:

S.^..00,3d i 2 . 3 2 6

The specification for core plate thickness was
.750 ± .003. Consider the two specification
limits separately as follows.

Taking first the upper specification limit
(.7530):

. ^ - Max. .7512 - .7530

- . 0 0 1 8

. 0 0 1 3
= - 1 . 3 8

Looking up —1.38 in the table on page 133
(under "Percentage Outside of Max."), we find
the percentage is 8.4%.

Now considering the lower specification
limit (.7470):

_ Min. - ^ _ .7470 - .7512 _
c ' . 0 0 1 3

. - 3 . 2 3
.0018

Looking up —3.23 in the table on page 133
(under "Percentage Outside of Min."), we find
the percentage is 0.1%.

To find the total percentage outside of speci
fication, add the percentages outside of the
upper and lower specification limits.
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8.4% + 0.1% = 8.5% total
Before deciding that a distr ibut ion is

"reasonably normal/' compare the plotted fre
quency distribution with the one on page 132 by
eye. See also page 133 on the use of probability
paper and various other tests for normality.
The shape of the distribution is more important
in estimating percentages than in most other
applications.

N o n - n o r m a l d i s t r i b u t i o n s

If the distribution has a moderate skew, fol
low the procedure outlined above; but in Step
3 read the percentages from Table II or Table
III on pages 135 and 136, depending on the
direction of the skew.

Example
Suppose the following have been calculated

from data (and the data are in control on an X
and R chart):

1 = .12225
<r' = .00045

A frequency plot of these data (Figure 57) in
dicates that we should use Table III (negative
skew, k = —I approx.).

Fig. 57. Frequency distribution of some data which
show control. A smooth curve has been drawn by eye

a r o u n d t h e t a l l i e d d a t a .

P r o b l e m :

Determine the percentage outside ± .001.

(1) For percent outside X + .001 (.12325):
, _ .12225 - .12325 _ ^' : 0 0 0 4 5

Find —2.22 in Table III (under "Per
centage Outside of Max.") and read
0%.

(2) For percent outside X — .001 (.12125):
.12125 -.12225 ^,^^^

. 0 0 0 4 5

Find —2.22 in Table III (under "Per
centage Outside of Min.") and read
3.6%.

Total percentage outside of J? ± .001 =
3.6%.

If the distribution has a very pronounced
skew, the best guide is an estimate based on
the frequency distribution of observed results.
In doubtful cases, it may be advisable to run a
p-chart in the shop in conjunction with your JC
and R chart, in order to determine whether the
percentage in the tail is controlled.

A-4.4 Estimating a percentage from a
p - c h a r t

At the conclusion of the process capability
study, you have obtained a long series of points
that show control. The process capability in
terms of percentage (that is, the percentage
outside of whatever l imit was used in deter
mining what would be called "defective") is
merely the centerline on the p-chart. This
estimate must always be considered as tenta
tive unless the p-chart represents one source of
data only.

If the p-chart does not represent one source
of data, the sources should be studied sepa
rately before attempting to estimate the over
all capability. Break the data down according
to source, type of defect, or other obvious con
tributors to the composite pattern. Per
centages should be estimated separately for the
various contr ibutors and later combined into
an overall estimate.

A-4.5 Estimating capability from a
pattern that is not in control

The following discussion applies to either X
and R charts or p-charts.

Occasionally it is necessary to estimate the
capability of a process prior to the time when it
has been possible to bring the pattern into con
trol. In such cases, the estimates can be only
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rough and tentative since the average of uncon
trol led data cannot be taken to be the true
capability.

However, estimates based on the early pat
terns in a capability study, even when out of
control, will be better than estimates arrived at
without such studies. While out-of-control pat
terns will not show the true capability, they per
mit us to make a more intelligent guess as to
where it lies. In addition, they show us how
far we are at present from reaching the desired
state of cont ro l .

To obta in the best es t imate f rom uncon
trolled patterns, proceed as follows:

(1) If the pattern shows a trend, determine
the cause of the trend and decide which
portion of it represents the way in which
the process will be run in the future. Esti
mate the capability in the manner de
scribed in paragraph A-4.1, basing your
estimates on the selected portion of the
pattern only. See Figure 58.

(2) If the pattern is interrupted by periodic
lack of control, this can sometimes be
recognized as indicating the presence of
two or more separate patterns in the data.
It should be possible to run the process at
any one of the indicated levels provided
we are able to identify the causes and
bring the process, at some later time, into a
state of control. See Figure 59; also
Figure 207 on page 194.

Wherever it is possible to pick out such
probable levels by eye, this provides a
reasonable basis for estimating capability.
Use engineering judgment in deciding
which points are likely to indicate separate
patterns.

(3) If the pattern is erratic in such a manner
that it is not possible to pick out the sepa
rate patterns by eye, it may be that the
best available estimate of capability mil be
the center of the out-of-control pattern. If
this estimate is used for want of a better
one, keep in mind that it is a very uncertain
estimate. See Figure 60.

W h e n e s t i m a t e s a r e b a s e d o n o u t - o f - c o n t r o l
patterns, always explain the basis for the esti
mate and show the pattern of the data from
which the estimate came. Also remember that

Fig. 58. Estimating from a trend.

Fig. 59. Estimating from an interrupted pattern.

Fig. 60. Estimating from an erratic pattern.

no estimate from uncontrolled data is reliable.
Reliability comes from knowledge that the
d a t a s h o w c o n t r o l .

A-4.6 Wrong ways of estimating the
process capabiiity

There are two common practices in estimat
ing capability which have no valid statistical
foundation. Engineers should avoid using
either of them in arriving at estimates or set-
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ting standards. The things to avoid are the
following:

I. Do not attempt to use a distribution
w i t h o u t a c o n t r o l c h a r t .

A distribution will not give a reliable esti
mate of the process capability unless the data
making up the distribution came from a con
trolled process. This can only be determined
by plotting the data on a control chart. To
use a distribution correctly in determining
capability, proceed as follows:

Plot the data on a control chart (in the
order of production, if possible), and deter
mine whether there were any significant
changes during the time when the data were
accumulated. I f there were significant
changes, the distribution should not be
used to determine capability.

II. Do not attempt to use the average of
past data without a control chart.
Even a long and intimate knowledge of the

job cannot show whether the average of past
data is anything like the real process capability.

To use the past data from a job correctly in
estimating capability, proceed as follows:

First check the data'statistically by means
of a control chart to determine whether it
shows significant changes. If significant
changes are found, the data should not be
u s e d w i t h o u t m o d i fi c a t i o n t o d e t e r m i n e

capability.
These two points have important implica

tions in engineering planning and in process
control. Unless the true capability is deter
mined, acceptance of past performance could
merely authorize and allow a continuation of
questionable conditions and practices.

A-4.7 Meaning of ' 'short-term" and
" long- te rm" capab i l i t y

The "short-term" capability of a process re
fers to its normal behavior at any given instant
of time. The "long-term" capability of a proc
ess includes the normal effect of toolwear,
m i n o r v a r i a t i o n s f r o m b a t c h t o b a t c h o f m a
terial, and similar small and expected varia
tions. Process control charts are set up,
w h e r e v e r D o s s i b l e . o n t h e " l o n e - t e r m " c a n a -

bility of the process. See page 64.
The short-term capability of the process in

cludes, among other things, the concept of its
"natural tolerance." In the case of sym
metrical distributions, the natural tolerance
is usually taken to be a spread of ±3 sigma
from the center. In the case of unsymmetrical
distributions the spread in either direction may
be more or less than 3 sigma, and the use of the
term "natural tolerance" is likely to cause con
fusion. The engineer will probably find it
safer to use the term "natural spread" for dis
tributions of all kinds, and to define it always
as plus so much and minus so much from the
distribution center. For example, "The natural
spread of the process is estimated to be =fc .003."
"The natural spread of the process is estimated
to be + .004, — .002." When used in this man
ner, the term "natural spread" always refers to
the short-term capability.

A - 5 U S I N G T H E I N F O R M A T I O N
F R O M A P R O C E S S
C A P A B I L I T Y S T U D Y

The first step in using the information from a
process capability study is to see whether the
capability, as revealed by the study, is what we
w a n t i t t o b e .

A process may be in control but at an en
tirely wrong level. It might be in control and
still be 50% outside of specifications. It
might be in control and well inside of specifica
tions, and still be at a point that would cause
the shop unnecessary trouble in adjusting or
assembly. It might be in control but have such
a wide spread that it would be virtually im
possible to reach a high yield. In addition to
this, serious measurement problems may have
been encountered, or it may be necessary to
get more data or different data in order to
obtain a permanent solution to the problem.
It is sometimes found that a specification needs
to be added, reworded, narrowed, widened,
m o d i fi e d o r r e m o v e d .

In any event there will be action of some sort
which is required as a result of the study. The
required action may be:

a. Action on the process.
b . A c t i o n o n t h e d a t a .
c. Action on the specification.



To determine what action is necessary, first
do the following:

• Make sure tha t the char t i s in s ta t i s t i
ca l con t ro l .

• Check the level of the X chart or p-
chart to see whether it is in a desirable

place.
• In a case of an X and R study, check

t h e c e n t e r l i n e o n t h e R c h a r t a l s o t o
make sure that the process does not
have too wide a spread. See page 56
for method of calculating the "spread
of individuals" in the process. It is
good practice to sketch the probable
spread of individuals on the X chart
as shown on page 31.

T h e n o n t h e b a s i s o f t h e a b o v e i n f o r m a t i o n
take the following steps.

Action on the process

(1) Decide what to do about the known as
signable causes. It is possible to elimi
nate them or leave them in the process.
Some of the causes you might not wish to
e l i m i n a t e a r e :

• N o r m a l t o o l w e a r .
• R e a s o n a b l e v a r i a t i o n s i n t h e m a

chine settings.
• Unavoidable variations in batches of

m a t e r i a l .
• Ordinary differences between opera

tors, etc.

If you leave these causes in the process, it
will generally require a shop control chart
to keep them within bounds. If you wish
to keep them out of the process, it may
require a control chart also.

(2) Decide whether it would pay to set up a
better process having a narrower capabil
ity. It may be possible to realize savings
by holding the process closer than the
present specifications so as to cut down ad
justing difficulties, etc. If you think it
would pay to set up a narrower process, it
may be necessary to run a designed experi
ment or make further capability studies.

(3) Find whether the present process can be
relocated in such a way as to get better re
sults or higher yields. Perhaps a change in
material, the re-design of a tool or fixture.

a change in the operator's work pattern
can move the process up or down. If the
process can be relocated to advantage, will
the new location be permanent? If not,
and if the location will be under the con
trol of the shop, you will need a shop con
t r o l c h a r t .

(4) Find whether it would be possible to get
cost reduction by using a more economical
process. No capability study should be
considered complete until this possibility
has been investigated.

(5) If the process at the end of the study is
in control with a satisfactory level and
spread, and if none of the above actions are
necessary, take steps to see that this de
sirable condition is made permanent.
This in itself may require a shop control
c h a r t .

Note that many of the actions that may be
required on a process tend to result in installing
shop charts. See Paragraph A-6 for the
method of setting up shop charts to complete
the action in a process capability study.

A c t i o n o n t h e d a t a

This may be of two different kinds:

(1) Error of measurement. There may be
indications that the measurements are not
reproducible. In that case the engineer
may need to make an error of measure
ment study before collecting further data.

(2) Inadequate amount of data. The pat
terns on the chart may still be inconclusive.
If so, more data are needed to solve the
original problem.

Action on the specification
This may take at least six different forms.
(1) Attempt to widen specifications which

are found to be narrower than the process
capability.

(2) Attempt to narrow specifications, if by
so doing you can obtain economic ad
vantages or a reduction in complaints.
Investigate the value of using tighter
tolerances on piece parts or components in
order to reduce trouble in later assemblies.

(3) Take off specifications found to be un
necessa ry.
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(4) Add specifications found to be necessary
or desirable.

(6) Shift the nominal of specifications found
to be in the wrong place.

(6) Re-word specifications found to be in
need of modification or clarification.

Do not be discouraged if you find that one
process capability study merely leads to an
other study and that one to a third study, etc.
The problems you are tackling may have
existed for many years. It may not be possible
to resolve such a tangled situation overnight.
Some process capability studies may extend for
a period of many months. See the example on
pages 66-71.

The determining factor is whether the study
continues to reveal information which leads to
a reduction in cost or improvement in quality
o r b o t h .

A - 6 T R A N S L AT I N G A P R O C E S S
C A PA B I L I T Y S T U D Y I N T O
A S H O P C O N T R O L C H A RT

Having obtained certain information from a

process capability study, the engineer knows
what distribution or range of distributions can
be maintained economically. He now wishes
to set up a process control in the shop which will
enable the shop to maintain the desired dis
tribution and obtain the desired benefits. Very
often the control which is needed in the shop
will be a standard shop control chart.

The engineer should keep in mind that while
the control chart technique is used for both
capability studies and shop charts, the two
applications are entirely different. Some of
the differences are shown in Figure 61. Study
these differences before attempting to set up a
shop chart.

Preparation for setting up the chart
Properly speaking, before a shop chart is set

up, the engineer should have experimented
with all elements of the process. He should
have studied the effect of changes in material,
methods, personnel and tools. He should also
have weighed the economics of each change so
that the shop standards arrived at will have
real economic meaning. However, it is seldom
possible for an engineer to carry a study to this
point prior to the installation of the shop chart.

C H A R A C T E R I S T I C P R O C E S S C A PA B I L I T Y S T U D Y P R O C E S S C O N T R O L C H A R T

P U R P O S E

S A M P L E S

A N A L Y S I S

A C T I O N

I N F O R M A T I O N

C E N T E R L I N E S

R E L A T I O N T O
S P E C I F I C A I I O N

To obtain information.

Relatively few.

Very careful analysis and in
terpretation.

Any change may be impor
tant, either good or bad.

Distribution shape is studied
as well as average and spread.

C e n t e r l i n e s a r e c a l c u l a t e d
f r o m t h e d a t a t o r e fl e c t t h e
d is t r ibu t ion o f the process
being studied.

Relation to specification is
carefully checked. The study
may lead to a change in either
the process or the specifica
t i o n .

To maintain a predetermined
d i s t r i b u t i o n .

A running series.

Shop watches only the more
obvious changes in pattern.

The shop acts only on un
wanted changes.

At tent ion focused main ly on
average and spread (or percent
defective).

Centerlines are set to represent
a balance between quality and
cost. They show where we
want the process to run.

Proper relationship to specifi
c a t i o n i s a l l o w e d f o r w h e n t h e
control chart is set up.

Fig. 61. Difference between a process capability study and a process control chart.
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In fact, if he did so, it would postpone the
immediate benefits which the shop could ob
tain from the chart. Consequently the usual
procedure in setting up a shop chart is the
following:

(1) The engineer makes a short intensive
study with enough experimentation to
effect the biggest improvements immedi
ately.

(2) He then installs a chart in the shop, and
the study is continued as a routine applica
tion of charting.

Continued use in the shop results in steady
improvement and in time determines the ulti
mate capability of the process. In the mean
time the engineer is making other studies.

A-6.1 Engineering a shop chart into the
Job on the basis of a process
capab i i i t y s tudy

The following procedure is used in translat
ing process capability information into per
manent shop form.

(1) Base the shop control chart on the
"long-term" capability of the process, as
shown by your present studies, rather than
its "short-term" capability. (See page
61.)

(2) Decide whether it is necessary to main
tain a single level as nearly as possible, or
whether it would be satisfactory to let the
distribution shift. If it is to be permitted
to shift, determine whether the amount of
shifting should be limited on the high side
only, on the low side only, or on both
s i d e s . S e t t h e c e n t e r l i n e s i n a c c o r d a n c e
w i t h t h i s d e c i s i o n .

(3) Calculate control limits for the shop
charts using the R or as the case may be,
from the controlled patterns in your proc
ess capability study. The mechanical de
tails of installing the chart should be
handled jointly by the Quality Control
Team. See pages 187-199 and 228-229.

(4) Work with the shop regularly and at fre
quent intervals in using the information
which develops from the chart. The Shop
Section of the Handbook contains a large

amount of practical wisdom on this sub
ject which has been accumulated through
years of application of statistical quality
control. This will be found useful to en
gineers as well as Operating people.

On an X and R chart, the presence of a
specification limit on one side or both is fre
quently a factor in setting up the chart. Other
economic considerations may also exert a strong
influence on the engineer's decisions, as follows:

(1) Some processes are not capable, in the
present state of engineering and manu
facturing knowledge, of turning out prod
uct which is compatible with specified
l i m i t s .

(2) Some specifications are not compatible
with each other. If the process is run at
a level which ensures meeting one set of
limits, large quantities of product may be
outside of another set of limits.

(3) Some processes have an optimum level
which will minimize, say, later diflSculties
in assembly. In such cases the engineer
may decide to run the process well inside
of the present specifications. Or he may
decide to run it on the high or low side of
n o m i n a l .

(4) Some processes, such as soldering or
impregnating, tend to cause shifts in
the characteristics of certain distributions.
It may be desirable to allow for such an
ticipated shifts in choosing the optimum
levels for the prior operations.

(5) There are some unavoidable conditions
in materials, piece parts etc. for which it is
necessary to compensate at a subsequent
point in the process.

(6) Some failures to meet specifications are
economically less undesirable than others.
It may be cheaper to repair units which
fail on the low side than on the high; or we
may prefer to have a number of spool-
heads so tight that they fail to fit relay
cores, rather than run the risk of having
loose spoolheads in the field.

(7) Some processes have maximum stability
and predictability when run at a particular
l e v e l .
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(8) Some characteristics need to be con
trolled although they have no specified
l i m i t s .

(9) Specifications themselves sometimes
need to be changed as a result of the in
formation developed from shop control
c h a r t s .

A-6.2 Typical example off the Installation
off a shop chart

Figure 62 shows a typical shop chart derived
from a process capabiUty study. A representa
tive portion of data from the capability study is
shown at the left-hand side of the chart. This
is useful guidance for the shop. It is repro
duced from a master chart along with the scales,
headings and control limits, so as to be a per
manent part of every chart. The lines on the
right-hand side of the chart represent the en
gineer's economic decision as to where the
process should run.

The right-hand side of the chart will be used
for the shop's samples. Note that the engineer
has provided two centerlines on the X chart, to
allow the shop the greatest possible leeway in
running the process. The shop will ignore any
patterns which form between the two center-
lines, but will apply the usual tests for un
natural patterns to any points which fall be
tween one of the centerl ines and its control
l imit. Note that only one control l imit is
shown fo r each cen te r l i ne .

I f new control l imits should be calculated
later as a result of new studies, a portion of the
new capability information will be shown at the
left-hand side of the chart in place of the old in
formation. This allows the shop people to
see at all times what is expected of them, and
to compare the current process with the engi
neering study on which the chart has been
b a s e d .

Further information on shop charts will be
found in the Shop Section on pages 187-229.

Max. o.

Process Capability Study

Fig. 62. Example of shop chart based on a Process Capability Study.



A - 7 S I M P L E E X A M P L E S O F
P R O C E S S C A PA B I L I T Y
S T U D I E S

The following are typical examples of process
capability studies. They illustrate (a) the
use of X and R charts and (b) the use of c-
charts. In the first case the study is carried
through to completion. In the second it is
only begun. Both studies illustrate the sim
plification of complex patterns which was de
scribed on pages 54-56.

First process capabil i ty study:
% and R charts
This problem involved an electrical charac

teristic on a certain type of switch. The
switch was manufactured on a machine with
12 different heads. Performance was erratic,
there seemed to be large differences among the
heads, and a large percentage of product was
being rejected because of failure to meet re
quirements. A process capability study was
undertaken by the Quality Control Team.

The Team made the following decisions
before collecting the original data:

Characteristic to be plotted: Operate
v a l u e o f t h e s w i t c h

Number of switches per sample: 5
Number of samples in the study: 50
Type of chart to be used: X and R chart
Sources to be studied: Individual source

of product (Head No. 6)
Person to collect the data, and instructions

to this person: Machine setter to take
da ta and make a no te o f a l l known
changes in the process during the period
of study

Period of time to be covered, and amounts
of data: 10-15 samples on each of
several different days

C o m m e n t s o n t h e s e d e c i s i o n s

The Team properly made plans in advance
for collecting suitable data. For the decision
on type of chart, see pages 47-48. For the
decisions on source to be studied and person
to collect the data, see page 49. In addition to
the instructions noted above, the machine
setter should be told how many measurements
to take on each switch and just how to take
t h e m .

For the period of time to be covered, see page
50. The period should be long enough to
make sure that the data will fairly represent
the cause system. For example, if there are
monthly production cycles, the study should
cove r a t l eas t a mon th .

For the point at which the data should be
collected, see pages 49 and 51.

C o n t r o l c h a r t

The control chart obtained from the init ial
data is shown in Figure 63. This chart has
many points out of control. It is typical of the
complex patterns often obtained at the begin
ning of a study.

Statistical analysis of Figure 63
This is a complex pattern. It is just as

important for the Team to know what not to
d o w i t h i t a s w h a t t o d o w i t h i t . T h e f o l l o w

ing are examples of what not to do with this
p a t t e r n :

(1) Do not give up, and conclude that this
is not a suitable area for applying statis
tical quality control.

(2) Do not decide to ignore this pattern, col
lect more data and see if the trouble dis
a p p e a r s .

(3) Do not waste time trying to find assign
able causes for the out-of-control points in
this pattern. It will be virtually impos
sible to find them with the pattern in its
present form.

Do, however, recognize the following:

(1) To interpret a complex pattern prop
erly, we must be able to interpret the
R chart. Here the pattern on the R
chart is "masked^' or obscure. This means
that it is inflated by the presence of hidden
variables. It will be necessary to reduce
o r r e m o v e t h i s i n fl a t i o n i n o r d e r t o i n t e r
pret the R chart,

(2) To reduce the inflation we must elimi
nate at least one of the large process
variables. (See page 55.) The pattern
will almost always give a clue as to what
th i s va r i ab l e shou ld be .

In the present case we see that the fluctua
tions on the X chart are much wider than the
fl u c t u a t i o n s o n t h e R c h a r t . T h i s i n d i c a t e s
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Fig. 63. First X and R chart in a process capability study.

over-adjustment. (See pages 153 and 203.)
We therefore look for some obvious process ad
justment and eliminate this before collecting
f u r t h e r d a t a .

Action taken as a result of this analysis
The Team found, on checking the machine

setter's notes, that a meter had been adjusted
from time to time to keep the process from
"drifting." They instructed the machine set
ter not to make any adjustments of this meter
while they were collecting the next data. The
result of this action is shown in Figure 64 on
the following page.

Statistical analysis of Figure 64
The chart on page 68 shows the effect of

eliminating one adjustment. The X pattern is
more stable, showing that the meter adjustment
was one of the controlling variables. The R
chart, however, shows just the opposite effect.
There are 23 x's on this R chart where there
were only 5 in Figure 63. To those who are not
experienced in reading control charts, this
pattern may look worse than the one in
Figure 63.

Nevertheless this R chart contains the key to
solving the problem. This can be seen by a more
careful comparison of the R charts in Figures
63 and 64. The first pattern was obscure and
could not be interpreted. The second is sharp
and clear and can easily be interpreted. The
increased sharpness, which is reflected in the x^s,
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results from the fact that we have eliminated one
of the major variables.

This is equivalent to filtering out noise in an
electrical circuit. When some of the noise, or
inflation, has been eliminated, this permits the
signal, or hidden pattern, to come through
more clearly.

Proceed as follows to interpret the R chart
in Figure 64:

(1) This can be recognized at once as a pat
tern of '^Instability.'' (See page 166.)
Check the material in the Handbook on the
subject of Instability (pages 166-167). We
find that this pattern is characterized by
unnaturally large, erratic fluctuations.
There may be a single cause operating on
the process erratically, or there may be a
group of causes operating in conjunction
w i t h o n e a n o t h e r . W e fi n d t h a t t h e fi r s t

thing to do is check the process for un
stab le mix tu res .

(2) Now check the material in the Hand
b o o k o n U n s t a b l e F o r m s o f M i x t u r e

(pages 179-180). We find that these are
caused by having several distributions in
the product at the same time. When the
mixtures appear on the R chart, as in
Figure 64, this indicates that the samples
are coming at random from the various
s o u r c e s c o m b i n e d . I n o u r o w n c a s e w e
are not sampling deliberately from more
t h a n o n e s o u r c e a t a t i m e . I f m i x t u r e s
exist in this process they are due to some
thing that the people are not aware of.

N o t e t h e s t a t e m e n t t h a t u n s t a b l e m i x
tures may show up as interact ions,
grouping, bunching or freaks. All of
these are evident on the R chart in Figure
64.

(3) Now check the causes which are listed
under Char t " on page 180. Among
these we find the following:

Fig. 64. Second X and R chart in a process capability study.



Two or more materials, operators, etc.
Too much play in a fixture.
Holding or locking devices unreliable.
Looseness o f a chuck .
Machine in need of repair.
Fixtures or holders not holding the

work in position.
Lack of alignment.
E t c .

Some of these possibilities can be eliminated
at once, since they would not apply to this
job. Any which cannot positively be elimi
nated should be carefully checked. Here we
would look with particular care at any devices
for holding the parts.

Action taken as a result of this analysis
T h e Te a m c h e c k e d a l l t h e m e c h a n i c a l d e

vices which had to do with positioning or hold
ing the assemblies. They changed one of the

fixtures and provided for magnetic alignment
of certain parts. The result of this action is
shown in Figure 65.

Statistical analysis of Figure 65
This chart shows the effect of the improve

ments in positioning and alignment. Much
of the instability on the R chart has disap
peared. The X chart also shows smaller fluc
tuations, and these are now seen to be repeating
themselves in more or less regular cycles.

Cycles were present in the original pattern
also (Figure 63) and again in the second pat
tern (Figure 64). But it would have been
almost impossible to recognize them in the
presence of larger, more erratic variables.

The causes for cycles are fairly easy to trace.
(See page 162.) These were found to be as
sociated with the time allowed for cooling before
the assemblies were removed from a certain
c h u c k .



Many things can be read from the control
chart as the patterns become simpler. In this
case, for example, the cycles on the X chart
t e n d t o ^ ' f o l l o w " t h o s e o n t h e R c h a r t . I n
a very large number of instances the fluctua
tions follow each other point to point. This
indicates skewness in the distribution of prod
uct. (See page 156.)

In a manually controlled process, one of the
common causes of skewness is the operator's
tendency to short-cut an operation. (See page
57.) This is consistent with the above cause
of cycles.

"F reaks " on t he R cha r t o r X cha r t can a l so
b e c h e c k e d . T h e s e w e r e f o u n d t o o c c u r i m
mediately before or after rest periods, lunch
periods etc. This again is consistent with the
cycles.

Action taken as a result of this analysis
The engineer installed an automatic timer

to prevent the operator from removing the
sw i t ches t oo soon . The resu l t o f t h i s i s shown
in Figure 66.

Statistical analysis of Figure 66

This chart shows the effect of installing the
automatic timer. Only an occasional point is
n o w o u t o f c o n t r o l . T h i s i n d i c a t e s t h a t m o s t
of the large assignable causes have been elimi
nated. On the other hand, any cause which is
still outstanding will show up very plainly,
since it now occurs singly rather than in com
bination with others. In the present example
several of the high points were found to be
caused by tightness or "binding."

Action taken as a result of this analysis

The engineer relocated the individual motors
on each head (from a position in front to one

Fifi r. 66 . Four th 5^ and R char t i n a n rocess canab i l i t v s tudv.



at the back of the head). This alleviated a
binding condition in the sliding portions of the
head. The result of this act ion is shown in
Figure 67.

Statistical analysis of Figure 67
This is the fifth chart in the study. It

shows little change from the fourth. The
level on the R chart has dropped slightly,
showing the effect of relocating the motors.
Ordinary production variables now come and
go, leaving easy traces on the chart. The shop
is able to find causes when out-of-control points
a p p e a r .

These things indicate to the engineer that
the process is probably approaching its capa
bi l i ty.

Capability of this process
The capability of this process is calculated as

f o l l o w s :

.? = 90 amp. turns. Can be held con
sistently.

<r = R/di = 6.5/2.326 = 2.8 amp. turns
Spread of distribution = .̂  ± 3 o- =■ 90

amp. turns ± 8.4.

Specification calls for 90 amp. turns ±11.
The process is capable of meeting this speci
fication easily and economically.

N o t e s o n r e s u l t s

Original distribution (prior to process capa
bility study) had spread of at least ±25, and
up to 40% of product might be outside of
specification. Compare this with the capabil
ity calculated above.

Cost reduction was realized through (a) fewer
defectives, (b) shop now making more as
semblies per hour, and (c) reduced inspec
t i o n .

Reliability of the product was also greatly
improved.

Information on Head No. 6 was carried over

O P E R A T E V A L U E I N A M P E R E T U R N S

X C H A R T

R C H A R T

Fig. 67. Fifth X and R chart in a process capability study.
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to the other heads. Similar shop charts
provided for all heads.

Charts can now be used to evaluate the effect
of process changes. For example, the shop
wished to eliminate the 100% gaging of cer
tain parts. When the chart showed no
adverse effect (Figure 67) this change was
made a permanent part of the process.

C o n c l u s i o n

This was a relatively lengthy process capa
bility study. In some cases the causes are
simple enough to show up on the first chart.

A-7.2 Second process capability study:
c - c h a r t s

The following is an example of the use of c-
charts to study the work of operators. The
original pattern is complex. (See Figure 68.)
The control limits appear to be much too nar
row for the fluctuations in the pattern, and the
fluctuations are erratic. We recognize this at
once as a pattern of Instability." (See pages
166-167.)

As in all complex patterns, this must be
simplified before it can be interpreted. (See
page 55.) Simplification of this pattern would
require the following steps:

(1) Complex patterns mean that the variable

used as a basis for plotting the points in
sequence is not the most significant vari
able. In Figure 68 the points are plotted
by "operator." To simplify the pattern,
select some other variable which is likely
to be significant and show this on the bot
tom scale. For example, the defects
might vary according to shift, or accord
ing to length of time on the job. Set up
a scale which is arranged according to
these possibilities.

(2) Re-plot the original data using the new
bot tom sca le . Reta in the same cont ro l
limits that were used in the original chart.
If the pattern tends to break up into simple
shifts or trends, the variable used in the
bottom scale is an important variable.

(3) If the pattern does not break up and
become simpler, select some other variable
for the bottom scale. If the pattern be
comes simpler but you wish to simplify it
still further, sub-divide the bottom scale
according to some second significant vari
a b l e .

Continue this simplification imtil the pattern
consists of (a) simple shifts in level or (b) a
simple trend. The following two charts are
plotted from the data in Figure 68.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7

O P E R A T O R N O .

Fig. 68. Process capability study usiug a c-chart. Each point is the number of defects found in a group of 100
wired panels. Each point represents the work of a different operator.



O P E R A T O R S O N F I R S T S H I F T

Fig. 69. First attempt to simplify complex pattern: data re-plotted according to shift.

The pattern remains complex. There is some other variable more important than shift.

Fig. 70. Second attempt to simplify complex pattern: data re-plotted according to length of time on the job.

Now the pattern becomes simpler. Time on
the job is an important clue to the cause of
de fec ts .

At this point it is possible to make tentative
estimates of the capability of this process for
operators with about 44 weeks of experience.
The change in pattern for the operators with

longest service (74 weeks) should also be in
vestigated.

Note that, in Figure 70, the original control
limits no longer appear to be unreasonably
narrow. Complex patterns on a p-chart are
simplified in much the same way as patterns
on a c -char t .
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A - 8 P E R F O R M A N C E S T U D I E S

"Performance studies" are temporary substi
tutes for process capability studies which are
made by selecting data for a certain period, cal
culating control limits and determining whether
the data show control. This permits the engi
neer to draw some of the conclusions he would
draw from a formal capability study, and is
sometimes useful until a more complete study
can be car r ied ou t .

A series of performance studies over a period
of time may be the practical equivalent of a
process capability study, provided the neces
sary tracing and elimination of causes is carried
out as the successive studies are made. En
gineers frequently take advantage of this in
setting up a program of shop control charts.
The procedure is as follows:

(1) Obtain sufficient data to provide about

twenty plotted points. Calculate control
limits and determine whether the pattern
is in control. Set up a temporary shop
control chart in accordance with this in
f o r m a t i o n .

(2) Work with the shop to bring the chart
into control or improve its pattern. When
the pattern improves, select a period of
data consisting of about twenty points
a n d c a l c u l a t e a n e w s e t o f c o n t r o l l i m i t s .
Use this new set of l imits as a second tem

porary shop control chart.

(3) Repeat this step from time to time in or
der to take advantage of progressive im
provements.

Figure 71 shows how a performance study
compares with a complete process capability
study.

P R O C E S S C A P A B I L I T Y S T U D Y

(percent defective)

1st Performance Study 2nd Performance Study Approach to Capability

Fig. 71. A succession of performance studies over a period of time may be the equivalent of a process capability
study.
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P A R T B

Designed Experiments
This part of the Handbook covers some of the elementary principles involved in Design of Experi
ment. The engineer is presumed to be familiar with the making of process capability studies as
covered in Part A. It is assumed that he has an acquaintance with the basic fact of variation,
the fact that apparent differences in data may or may not be significant, and the need for apply
ing statistical tests to data to discover whether a significant effect exists.
The following pages describe three types of designed experiment which engineers and shop people
are called upon to handle more frequently than any others:

(1) Simple comparisons.
(2) Error of measurement.
(3) Four or five factor experiments to study main effects and interactions.

While reference will be made to statistical methods other than control charts, the principal em
phasis in this section will be on the control chart analysis. Detailed information on other meth
ods will be found in the references listed on pages 277-278.
This section will treat Design of Experiment as one of the steps in a process capability study.
Particular emphasis will be placed on the tracing of causes in process capability studies which
are hidden so deeply that they could not easily be discovered by other methods.

B - 1 P L A C E O F D E S I G N E D
E X P E R I M E N T S I N A
P R O C E S S C A P A B I L I T Y
S T U D Y

B-1.1 Review off the theory off a Process
Capabi l i ty Study

The theoretical basis for a Process Capability
Study was described on pages 35-36. The
total variation in the process is separated by
control charts into natural and unnatural por
tions. The unnatural portion is then studied
for the purpose of identifying and eventually
removing its causes. When these causes are
removed the process is reduced to its true
capability. It is clear that the crucial step in
such a study is the tracing and identification of
causes. If the engineer is unable to complete
this step, he will be unable to get results from
the capability study.

In a majority of cases, when the engineer
looks at the plotted patterns in such a study.

he finds there are obvious reasons for the pat
tern changes. All he has to do is draw on his
knowledge of the job to tell what is causing the
unnatural variation. In other cases he learns
to identify and interpret the 15 different types
of control chart pattern which are explained on
pages 161-180. An example of this is given on
pages 66-71.

If this is not sufficient the engineer may re
sort to the so-called "breakdown'' techniques.
He separates the data according to different
sources or production paths. He uses scatter
diagrams or trend arrangements to pick up
correlations. A discussion of this is given on
pages 54-56.

Finally, if all ordinary resources fail and the
causes remain so deeply hidden that he is un
able to find them, he may use a Designed Ex
periment to break up the variation into com
ponent parts and find the answer. The infor
mation obtained in the previous steps of analy
sis is a vital factor in properly designing the
experiment. Omission of the previous steps
often leads to failure in using the experimental
techniques.
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B-1.2 Comparison between Design of
Experiment and Process
Capabi i i ty Study

A Process Capability Study can be thought of
as a one-factor designed experiment. The one
broad factor being studied is time (or produc
tion path, source of material, or any other fac
tor which forms the basis for the plotting of
points in sequence.) A Designed Experiment
on the other hand may include a number of
factors which are being studied all at once. The
data are arranged and rearranged for study ac
cording to these factors. The feature which
makes it a "designed experiment" is the fact
that the data have been collected in such a
manner as to make these re-arrangements
possible.

From another point of view, Design of Ex
periment is a much more limited technique
than a Process Capability Study. Process
Capability Studies are concerned with the
effect of any and all factors on the character
istic being studied. The rule that capability
s tud ies should cover a number o f d i f fe rent
points in time arises from the fact that it is
necessary to allow sufficient opportunity for
unanticipated and unintentional changes (or
variables) to appear in the process. In a De
signed Experiment we try to eliminate all fac
tors except the few which have been selected for
study.

Design of Experiment is a powerful tech
nique, one which is very useful when employed
in the appropriate circumstances and when sur
rounded with appropriate precautions. It is,
however, a technique to be used with reserve
and never under any circumstances substituted
for the broader Process Capability Study.

B-1.3 Meaning of ^^experiment'^ and
' 'exper imental techniques"

Every Process Capability Study can be
thought of as an experiment. The principal
object of the study is to learn what a given
process is able to do. By changing one or more
elements in the process and observing the effect
on the charts, it is possible to use the Process
Capability Study as an experimental technique.

Ordinarily, however, when we speak of "ex
periments" on a process we mean something
which is, at the same time, more formal and

more limited than a capability study, and more
concerned with research or with delving into
the unknown. We sometimes conduct experi
ments before we have even set up a process in
order to discover what the best process would
be. By using the formal experimental tech
niques it is possible to study the effect of several
variables simultaneously and also to study any
inter-relationships or interactions between
them. The techniques are useful for deliber
ately disturbing causes which are in balance,
for breaking apart the effects of hidden vari
ables in a going process, and for studying the
possible effects of variables during develop
ment and design.

B-1.4 Types of experiment
Experiments on industrial processes run all

the way from informal and unofficial changes,
introduced on a more or less hit-and-miss basis,
to carefully planned formal experiments which
may involve months of effort on the part of a
group of people and which consist of an inte
grated set of plans using complicated mathe
matical and statistical designs. If we arrange
some of these experiments in the order of in
creasing formality we might have a list some
thing like this:

(1) Trial and error methods: introducing a
change into the process and then watching
to see whether an effect shows up in the
r e s u l t s .

(2) Running "special lots," more or less
carefully identified with respect to the
conditions under which the special lots
were made .

(3) Pilot runs, in which certain process ele
ments are deliberately set up with the
expectation of producing a desired effect.
Results are then studied to see how close
they come to what was anticipated.

(4) A planned experiment involving a simple
comparison of two methods.

(5) A somewhat more complicated experi
ment involving more than one factor. For
example, an error-of-measurement study
where we wish to separate the effect of the
measuring instrument from the effect of
variables in the product.
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(6) A more complicated experiment involv
ing several factors, set up in such a way as
to make it possible to study interactions
be tween these fac to rs .

(7) Experiments containing more factors
and arranged in still more complicated de
signs.

(8) A comprehensive experimental plan em
bracing broad problems and including
many experiments. Some "operations re
search" projects are of this type.

In using experiments of Types 1 and 2 (trial
and error methods or running special lots) the
informal conclusions reached should be checked
on process control charts. Pilot runs (Type 3)
should be analyzed with a standard process
capability study. Experiments of Types 4, 5
and 6, which involve a limited number of fac
tors and simple interactions, will be discussed
in the present section.

This Handbook will not attempt to give in
formation on the more complicated types of
experiment such as No. 7 and No. 8.

B-1.5 Dangers and pitfalls In
non-stat ist ical exper imentat ion

The ordinary type of experiment is subject
to many pitfalls and dangers. Among the
most serious of these are the following:

(1) Unless the experiment is carefully
planned and the results studied statisti
cally, conclusions may be wrong or mis
leading.

(2) Even if the answers are not actually
wrong, non-statistical experiments are
often inconclusive. This may cause the
experimenters to fail to recognize a proper
and productive course of action. It may
also send them off experimenting along the
wrong lines.

(3) In non-statistical experimenting, many
of the observed effects tend to be mysteri
ous or unexplainable. A given procedure
may not yield the same results a second
time. The results may be in conflict with
job knowledge or shop experience.

(4) Time and effort may be wasted through
studying the wrong variables or obtaining
too much or too little data.

By planning his experiments statistically and
analyzing them with control charts, the engi
neer is able to avoid many experimental prob
lems and obtain solutions for others.

(1) He can save time and money.
(2) He can carry out the experiment with

less interruption to the shop.

(3) He can drop out statistically the effects
of unwanted variables.

(4) He can evaluate the results when experi
ments fail to repeat.

(5) It is easier to reconcile his new results
with previous knowledge.

(6) He can plan scientifically how much
d a t a t o c o l l e c t a n d w h a t v a r i a b l e s t o
i n c l u d e .

B - 2 E X P E R I M E N T 1

(Comparison off Two Methods)

B-2.1 Background
The simplest experiment which an engineer

is called upon to conduct, and also the most
common type of experiment performed in in
dustry, involves the comparison of two ma
chines or two methods. The background for
an experiment of this type might be as follows:

The engineer has designed Method 1 in the
hope that it will be superior to Method 2.
The variable in which he is interested is a
certain electrical property. He wants the
measurements to be high and as uniform as
possible. The engineer sets up the two
methods and obtains a certain amount of
d a t a f o r e a c h .

By a casual comparison of the two sets of
data he is unable to tell conclusively whether
Method 1 is better than Method 2. He de
cides to test the data statistically in order to
find which method is better.

His real purpose is to be able to make a
further decision: that is, whether to change
over to Method 1 or forget about Method 1
and try something else.

The measurements obtained for one such
experiment were as follows:
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Method 1 M e t h o d 2
8 . 6 - 9 . 3 - 3 . 9 4 . 6

1 2 . 7 3 . 8 11 . 9 - 3 . 0
8 . 2 7 . 0 2 . 9 1 . 5

1 0 . 0 - 4 . 7 - 4 . 0 2 . 3
5 . 8 - 8 . 2 0 . 7 - 2 . 0
5 . 5 0 . 8 - 9 . 4 - 8 . 4

1 2 . 5 - 8 . 7 0 . 4 8 . 6
1 0 . 1 3 . 5 - 7 . 6 5 . 6
8 . 7 1 . 7 - 1 . 9 - 6 . 9
9 . 1 - 9 . 0 1 4 . 4 4 . 8

Fig. 72. Data for an experiment: comparison of two
m e t h o d s .

2 range from —9.4 to +14.4. Does this indi
cate a significant difference between methods?

(4) Simple observed proportions
There are 5 negative measurements in

Method 1 and 9 in Method 2. Is this difference
significant?

(5) Distributions
The following are the frequency distributions

of the measurements in Method 1 and Method
2.

B-2.2 Methods off analysis
The analytical method recommended in this

Handbook will be the control chart. However,
the engineer should be acquainted, at least
briefly, with various other techniques which are
often used to analyze experimental data.
Among these are:

(1) Observation of the data.
(2) Tests for normality.
(3) F-test (variance ratio test).
(4) Bartlett's test.
(5) Tests for constancy of the system of

c a u s e s .

(6) ^-Test.
(7) The analysis of variance.

B-2.3 Observat ion o f f the data

The following comparisons may be made
without applying statistical tests:

(1) Visual comparison
Do the measurements under Method 2 ap

pear to the eye to be different from Method 1?

(2) Average of the measurements
The measurements for Method 1 average

+3.405. Those for Method 2 average +0.53.
Should this be considered a significant difference
in average?

(3) Observed range of measurements
The measurements for Method 1 range from

— 9.3 to +12.7. The measurements for Method

M e a s u r e m e n t s M e t h o d 1 M e t h o d 2

+ 11.0 to + 14.9 / / / /

+ 7.0 to + 10.9 m / / / /
+ 3 . 0 t o + 6 . 9 / / / / / / /
- 1 . 0 t o + 2 . 9 / / m
- 5 . 0 t o - 1 . 1 / m
— 9 .0 t o - 5 . 1 / / / / /
- 1 3 . 0 t o - 9 . 1 / /

Fig. 73. Distribution of measurements: Method 1 and
M e t h o d 2 .

The distributions may or may not be sig
nificantly different. We would hesitate to say,
without a statistical test, that these two groups
of measurements cou ld no t have come f rom the
same population.

B-2.4 Analysis by fformal statistical
m e t h o d s

The formal statistical methods require cer
tain assumptions, the most common of which
are the following:

(1) Normality of the distribution.
(2) Equivalence of the variances.
(3) Constancy of the cause system.
The following are some of the methods com

monly used to check these assumptions:

(1) Tests for normality
For reasonably large amounts of data it is

possible to use the ''chi-square test" to test the
normality of the observed data. (See Ref-
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erence No. 13.) Another method would be to
use normal probability paper on which the
cumulative percentages could be plotted.
(See Reference No. 13.) The present experi
ment does not include enough measurements to
justify the use of either of these methods. In
fact there is no satisfactory test for normality
which involves so small an amount of data.

If either of the above tests were used in spite
of the small quantity of data, they would not
indicate any significant departure from normal
ity, either in the case of Method 1 or Method 2,
or both methods combined. Ordinarily, there
fore, in a formal statistical analysis, we would
assume that the data could be treated as hav
ing come from a normal population.

(2) F-test
This is a test for equivalence of the variances

(also known as the variance ratio test). This
test is used when there are only two variances
to be compared. The calculations are shown in
Figure 74.

To apply this test, look up the value of F for
degrees of freedom 19 and 19 in a Variance

Ratio Table (see Reference No. 5). The value
of 1.29 is definitely not significant. Conse
quently, the variances may be considered equal.

(3) Bartlett's test
This is an alternative test for equivalence of

the variances. It can be used for any number
of variances. The calculations are given in
Figure 75.

To apply this test, look up the value of x* for
{k — 1) degrees of freedom in a Chi-square
Table (see Reference No. 5). The value of
.296 is definitely not significant. Consequently,
the variances can be considered equal. This
agrees with the variance ratio or F-test.

(4) Testing the assumption of constancy of
the cause systems

There is no convenient way of doing this
except by using control charts. In a classical
analysis, we ordinarily assume that the cause
systems did not change provided we feel that
we have kept all conditions constant while
collecting the data for Method 1 and Method 2.

Fig. 74. F-test for equivalence of the variances.
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B a r t l e t t ' s Te s t

2 (X» )
1 2 9 4 . 8 7
8 2 7 . 2 0

( x x y
4 6 3 7 . 6 1

1 1 2 . 3 6

(2X )»T-n
2 3 1 . 8 8

5 . 6 2

2 ( z -
1 0 6 2 . 9 9

8 2 1 . 5 8

M e a n v a r i a n c e = S ' = 4 9 . 5 9 0

l o g , ( S » ) = 3 . 9 0 4

k = 2 (number of methods)
df = 19
B = km log, - m 2 (log, <r,«)

= 2(19)(3.904) - 19(7.792) = 148.352 - 148.048 = .304

^ ̂  + 3fc^ ̂  ili ° 114 "
I = .296
NoU: -̂  = x'

Fig. 75. Bartlett's test for equivalence of the variances.

(5) Conclusions reached by the foregoing
m e t h o d s

We conclude from the foregoing tests that
the data may be treated as having come from
a normal population, that the variances of the
two methods may be considered equal and that
the two cause systems may be considered con
stant. Under these assumptions, it is possible
to test for a significant difference between the
averages by using either a <-test or the analysis
o f v a r i a n c e .

(6) t-Test
T h e c a l c u l a t i o n s f o r o n e f o r m o f ^ - t e s t a r e

shown in Figure 76.
Look up the value of "i" for 38 degrees of

freedom in a Table (see Reference No. 5).
The value of 1.32 is definitely not significant.
Consequently, the averages can be considered
equal.

(7) Analysis of variance
This is an a l te rna t ive tes t wh ich can be used

for any number of averages. It depends on
finding the variance of the entire set of num
bers, subtracting the variance due to the ob
served difference between averages, and using
the remaining variance (or residual) to test

' ' ^ " - Te s t

Method 1

Z X 6 8 . 1

"20- = ̂  ̂

M e t h o d 2

'■- V f - ' - V l - * - -
= V53~l = 7.3 = VITb = 6.4

Let (TD be the standard deviation of the difference between averages.

Fig. 76. t-Test for siguiticant difference between averages.
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w h e t h e r t h e o b s e r v e d d i f f e r e n c e b e t w e e n a v e r
ages is significant.

Th is me thod can be ex tended to tes t a num
ber of variables and interact ions in a much
more complicated experiment. (See pages 93-
97.) The calculations for the present data are
shown in Figure 77.

To apply this test, look up the value of F for
degrees of freedom 1 and 38 in a Variance Ratio
Table (see Reference No. 5). The value of 1.67

is definitely not significant. Consequently, the
averages can be considered equal. This
agrees with the <-test.

Practical result of using the above methods
Since none of the above tests have shown

a significant difference between methods, the
engineer would have to conclude that Method
1 i s n o d i f f e r e n t a n d t h e r e f o r e i s n o b e t t e r
t h a n M e t h o d 2 .

n = 4 0
T (grand total) = 78.7 Analysis of Variance

N o . o f
i n d . N o . o f

S o u r c e ( i ) T o t a l s Totals to be Squared

I n d i v i d u a l s 1 1 4 0 8.6 1 12.7 1 8.2 1 10.0

C « — = 1 5 4 . 8 4 2
n

- 9 . 0 - 3 . 9

- 7 . 6 - 1 . 9

2 . 3 - 2 . 0

M e t h o d s

R e s i d u a l

2 C o r r e c t e d M e a n
S o u r c e S q u a r e s 4 - i 2 S q u a r e s * d f S q u a r e

I n d i v i d u a l s 2 1 2 2 . 0 7 2 1 2 2 . 0 7 0 1 9 6 7 . 2 2 8 3 9

M e t h o d s 4 7 4 9 . 9 7 2 3 7 . 4 9 8 8 2 . 6 5 6 1 8 2 . 6 5 6

R e s i d u a l — — 1 8 8 4 . 5 7 2 3 8 4 9 . 5 9 4

Fig. 77. Analysis of variance to test for a significant difference between averages.
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B-2.5 Control chart analysis
The control chart has certain advantages

over other methods of analysis in the treatment
of experimental data.

(1) It takes account of the order in which the
measurements were made. In this it dif
fers from the chi-square test, the -F-test
and Bartlett-s test.

(2) It does not require assumptions of
normality, equivalence of the variances or

constancy of the cause systems. In this it
differs from the ^test and the analysis of
variance. The control chart sets up hy
potheses of normality, equivalence and
constancy, but the data in the experiment
are able to make us reject any of these
hypotheses.

The control chart will therefore, under certain
circumstances, give different results from other
m e t h o d s .

For a control chart analysis of the foregoing

M e t h o d 1 8 . 6 8 . 2 5 . 8 1 2 . 5 8 . 7 - 9 . 3 7 . 0 - 8 . 2 - 8 . 7 1 . 7
1 2 . 7 1 0 . 0 5 . 5 1 0 . 1 9 . 1 3 . 8 - 4 . 7 0 . 8 3 . 5 - 9 . 0

X 1 0 . 6 5 9 . 1 0 5 . 6 5 1 1 . 3 8 . 9 0 - 2 . 7 5 1 . 1 5 - 3 . 7 0 - 2 . 6 0 - 3 . 6 5
R 4 . 1 1 . 8 . 3 2 . 4 . 4 1 3 . 1 1 1 . 7 9 . 0 1 2 . 2 1 0 . 7

M e t h o d 2 - 3 . 9 2 . 9 0 . 7 0 . 4 - 1 . 9 4 . 6 1 . 5 - 2 . 0 8 . 6 - 6 . 9
1 1 . 9 - 4 . 0 - 9 . 4 - 7 . 6 1 4 . 4 - 3 . 0 2 . 3 - 8 . 4 5 . 6 4 . 8

X 4 . 0 0 - . 5 5 - 4 . 3 5 - 3 . 6 0 6 . 2 5 . 8 0 1 . 9 0 - 5 . 2 0 7 . 1 0 - 1 . 0 5
R 1 5 . 8 6 . 9 1 0 . 1 8 . 0 1 6 . 3 7 . 6 . 8 6 . 4 3 . 0 1 1 . 7

Fig. 78. Calculations for an ^ and R chart. Method 1 and Method 2.

n « 2

M E T H O D 2
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data, take the measurements in the order in
which they were obtained. Since the quantity
of data is limited, break it up into samples of
two. In calculating control limits use the or
dinary control chart factors which are given on
page 12.

Plot both sets of data against the same set of
control limits, as shown in Figure 79. In mark
ing x's on the R chart, use the tests for samples
of two which are given on page 182.

The chart is interpreted like any other control
c h a r t .

B-2.6 Conclusions reached from studying
t h e c o n t r o i c h a r t

In Method 1, the X chart and the R chart
are both out of control. We therefore arrive at
the following statistical conclusions from this
c h a r t :

(1) Since Method 1 shows a definite shift in
both average and spread, its data cannot
be treated as having come from a normal
population.

(2) Since the variability in Method 1 is out
of control, its variance cannot be treated
as equal to that of Method 2.

(3) The data for Method 1 did not come from
a constant system of causes.

(4) Method 1 will evidently be superior to
Method 2 provided we maintain the condi
tions which existed during the earlier portion
of the experiment

Note that, in this experiment, the control
chart contradicts all the assumptions made in
o t h e r m e t h o d s .

On the practical side, it is evident that the
early data in Method 1 must have come from a
very desirable distribution. Its average was
significantly higher than the general average of
the data and its spread was extremely narrow.
If the engineer is able to discover the variable
which entered the process later and disturbed
the results, it is clear that Method 1 will be
much more uniform than Method 2 and wi l l
also give higher readings.

There is no similar indication of possible im
provement in the case of Method 2.

B-2.7 Practical results from studying the
c o n t r o l c h a r t

The engineer investigated what had hap
pened in Method 1. He found there was trouble
with a small locating device which had jammed.
This accounted for the drop in average and the
immediate increase in spread. By making a
modification which would virtually eliminate
the possibility of jamming, the engineer was
able to get consistently superior results from
M e t h o d 1 .

When experimental data are plotted on con
trol charts, the results often reach farther than
the experiment itself. In the above case the
engineer had found a mechanical condition
which was able to affect an electrical meas
urement. This caused him to investigate vari
ous other conditions having to do with the
mechanical location and feeding of the parts.
Eventually, by studying successive sets of
data with control charts, he was able to get the
average electrical measurement up to almost
16 and still retain the very uniform spread
which had been indicated originally by his R
c h a r t .

B-2.8 Comparison between the controi
c h a r t a n d o t h e r s t a t i s t i c a i m e t h o d s

In spite of the fact that different conclusions
were reached in this experiment, there is no
theoretical conflict between the control chart
and other sound statistical methods. If these
had been reliable averages for Method 1 and
Method 2 {X charts in control) and if the vari
ability had been constant and equal (R charts in
control), the control chart and the other methods
would have agreed very closely.

In general, the control chart will agree with
an F-test or Bartlett's test provided the pat
terns on the X chart and R chart would not
show any unnaturalness if the individual fac
tors were plotted separately. It will agree with
a test or analysis of variance if, in addition
to the conditions cited above, none of the R
patterns would show any evidence of unnatural
ness when plotted on the same R chart. How
ever, if a control chart pattern shows insta
bility, freaks, stratification, etc., the control
chart analysis is likely to disagree with other
methods. In such cases, the information given
by the control chart will cause us to modify any
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conclusions arrived at by other methods.
For this reason it will be desirable to use

control charts in analyzing the experiments
d e s c r i b e d i n t h i s H a n d b o o k .

B - 3 E X P E R I M E N T 1 1

(Error off Measurement)

B-3.1 Background
This is a somewhat jnore complicated experi

ment than Experiment I. It involves two dif
ferent factors whose effects are to be separated
and studied. The background for this experi
men t i s as fo l l ows :

Tw o i n s t r u m e n t s a r e a v a i l a b l e f o r m e a s u r

ing a certain product. Instrument 1 is be
lieved to be a finer piece of equipment than
Instrument 2. However, the engineer and
others have measured the product with
both instruments and attempted to com
pare them. It does not appear from the
i n i t i a l r e s u l t s t h a t e i t h e r i n s t r u m e n t i s
superior. We wish to test the two instru
ments statistically to determine which is
better for measuring this product.

To solve this problem it is necessary to "de
sign an experiment" which will separate the
error of measurement from the variat ions in
the product. This is different from Experiment
I where we were concerned only with variations
in the product.

to find that there was apparently no difference
between the instruments. As a matter of fact,
note that there is remarkable correspondence
between the two halves of the chart. The pat
tern of Instrument 1 is repeated very closely
u n d e r I n s t r u m e n t 2 .

Interpretation of this chart
A l i t t l e cons ide ra t i on w i l l show tha t t he

above chart is not really comparing instru
ments. This chart shows certain pieces of
product measured on Instrument 1 (first half
of the chart) and then the same pieces of
product measured on Instrument 2 (second
half of the chart). The similarity between the
two halves of the chart tells us that we had the
same pieces of product measured in the same
order in both cases; also that the effect of the
measuring instrument, whatever it may have
been, was not large enough to hide the varia
tions that actually existed in the product. This
is a chart on product rather than a chart on in
struments. There is nothing in the "design"
or planning of this experiment that makes it
possible to compare instruments or to study the
m e a s u r e m e n t e r r o r .

B-3.3 Design for an error of measurement
s t u d y

The design of an experiment for this type of
study is very simple. All that is necessary is to

B-3.2 Original data
The following example shows why a poorly

designed experiment may fail to give proper
conclusions. Originally, a number of units of
product were measured on Instrument 1.
The same units were then re-measured in the
s a m e o r d e r o n I n s t n u n e n t 2 . A l l m e a s u r e
ments were made by the same experienced
operator. The measurements are given in Fig
ure 80.

The engineer took these in groups of 5, pre
serving the order in which the measurements
had been taken. The first sample consisted of
20, 24, 19, 21 and 25. The other samples fol
l o w e d i n o r d e r . H e l a b e l e d t h e c h a r t I n s t r u
ment 1 and Instrument 2. See Figure 81.

On studying this chart he was disappointed

I n s t r u m e n t 1 I n s t r u m e n t 2

2 0 2 4 2 8 2 6 1 8 2 1 2 8 2 7 2 8 2 3

2 4 2 3 2 8 2 6 2 1 2 6 2 7 3 2 2 7 2 0

^ 19 22 21 18 24 23 20 23 19 24
I 21 15 29 16 24 19 15 30 14 24i 25 22 27 25 25 22 13 26 23 25

1 8 2 9 2 4 2 4 2 1 1 7 2 4 2 3 1 9 2 5

1 9 2 6 2 2 2 0 1 8 2 3 2 4 1 9 2 0 1 5

2 7 3 2 2 4 2 0 2 5 3 1 3 3 2 2 2 3 2 4

2 1 2 0 2 3 2 3 2 8 2 4 2 2 2 5 2 3 3 2

2 5 2 4 1 7 2 2 2 0 2 2 2 5 1 8 2 2 1 9

Fig. 80. Data for an experiment: error of measurement
study.
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Fig. 81. Does this chaxt show a comparison of Instrument 1 and Instrument 2 ?

measure the same parts again, as follows:

Retain the 50 measurements already re
c o r d e d u n d e r I n s t r u m e n t 1 . T h i s t i m e
however, they should be identified as
Measurement A.

Then take the same parts and meas
ure them a second t ime in the same o rde r
on the same instrument. Record the new
set of measurements as Measurement B.

This procedure is repeated for the
second instrument in the same way.

The two se ts o f measurements must be taken
under the "same essential conditions." (See
pages 89-90.)

T h e m e a s u r e m e n t s o b t a i n e d f o r t h e t w o i n
struments are shown in Figure 82.

This is now a "designed experiment" be
cause it is possible to plot the data in more than
one way. If we form samples as we did in Fig
ure 81, by grouping the data vertically, we will
obtain, as before, a chart on product. How

ever, it is now possible to form samples by
taking the measurements horizontally instead
of vertically, so that Measurement A and Meas
urement B are included in one group. We can
\̂ e these horizontal groups to plot an ordinary
X and R chart for samples of two. This will
make it possible to compare instruments, and
also to obtain some interesting information
about the suitability of the instruments for
measuring this type of product.

B -3 .4 Cha r t f o r t he e r ro r o f measu remen t
s t u d y

Figure 83 on page 86 shows the X and R val
ues for horizontal samples of two. Plotting
these values on a control chart (Instrument
1 only), we obtain Figure 84.

N o t e t h a t t h e X c h a r t i s o u t o f c o n t r o l
throughout the data. This type of chart
requires a special interpretation which is very
different from the interpretation given to
the ordinary shop chart or the ordinary process
capability study.
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I n s t r u m e n t 1 Instrument 2

Fig. 82. Simple design for an error of measurement study: data on instruments.

I n s t r u m e n t 1 I n s t r u m e n t 2

Fig. 83. II and R calculations: error of measurement study.



Fig. 84. Error of measurement chart for Instrument 1.

B-3.5 Interpretation off the error
o f f m e a s u r e m e n t c h a r t

The R chart shows, directly, the magnitude
of the error of measurement This is because the
R values represent differences between succes
sive measurements made by the same instru
ment on the same piece of product. When the
R chart shows instability, as this one does in
the latter portion, it means that the operator
of the instrument is having difficulty in taking
the measurements consistently. This in itself
may be one of the factors which the engineer
will wish to consider in deciding which instru
ment to use for a given purpose. In general, a
good instrument should have a low centerline
on the R chart and the indications of instability
should be as few as possible.

The X chart, on the other hand, shows the
discriminating power of the instrument. The
plotted points represent different pieces of

product. The control limits, being derived
from the error of measurement chart, represent
the inability of the instrument to tell one piece
from another—that is, the area over which
this instrument is not capable of discriminat
ing. If the X points stayed in control, it would
mean that the measuring instrument could see
no difference between the pieces of product.

A good measuring instrument, suitable for
measuring this product, should have such nar
row control l imits that al l or most of the X
points will be thrown out of control. Note that
this is quite different from the ordinary control
chart. In an error of measurement study we
want the X points to go out of control.

The chart shown above should be interpreted
as fo l l ows :

Instrument 1 is capable of reproducing its
results very closely and can readily dis
tinguish between units of product. It is
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suitable to use for the purpose being con
sidered. The instrument is also capable of
being used with consistent results. Its
present good performance can even be im
proved somewhat as the operator using the
instrument learns how to improve his
technique and eliminates the indications of
instability on the R chart.

B - 3 . 6 C a l c u l a t i o n o f m e a s u r e m e n t e r r o r
To calculate the actual magnitude of the

measurement error proceed as follows:

R from Fig. 84 = approx. 0.8 unit

, ^ 0 . 8 ^ ^

where da is the standard control chart factor for
samples of 2. See page 131.

The distr ibut ion of measurement errors is
known to be approximately normal. Conse
quently, the spread of these errors (assuming
that the R chart can be brought into control)
will be approximately ±3 <r\ Individual
measurements can be expected to vary as much
as ±2.1 units (on repeated measurements) in
ext reme cases.

About two-thirds of the measurements wil l
vary less than ±0.7 unit (±1 <r').

B-3.7 Comparing instruments
Taking the X and R values in the same way

for Instrument 2, we obtain Figure 85. Again
the R chart shows, directly, the error of
measurement. We see at a glance that this is
much higher than in the case of Instrument 1.
Not only is it at least four times as large, but
there are many more indications of instability.
The operator using this instrument will have

I N S T R U M E N T 2

X X X

X shows the discriminating power of the instrument.

R shows the error of measurement.

Fig. 85. Error of measurement chart for Instrument 2.



much more trouble reproducing his results (un
less, of course, the operator can be trained to
use the instrument much more consistently
than he is doing now).

Again the X chart shows the discriminating
power of the instrument. This time, however,
because of the high value of R, the control
limits on the X chart are very wide. This
means that the inaccuracies of measurement
are large enough to swallow up most of the
variations from unit to unit in the product.
Only the very largest units or the very smallest
can be reliably distinguished from the others.

It is not possible to calculate the actual mag
nitude of the measurement error of Instrument
2, because the R chart is out of control. A
rough estimate, however, would be that <t'
must be close to 3. {R/d2 = 3.4/1.128 =
approx. 3.) Since individual errors are likely
to spread about ±3<r', the measurements made
by this instrument may vary in extreme cases
as much as ±9 units. Two-thirds or more of
the measurements can be expected to vary up
to ±3 units.

B-3.8 Comparing the error of
m e a s u r e m e n t w i t h t h e
variabiiity of the product

Consider the case of Instrument 1, where the
error of measurement was essentially in control.
From the first half of the chart on product,
which was shown on page 85, we observe that
R for the product as measured was 8.2 units.
The total variability, therefore (including both
product variability and measurement variabil
ity), can be expressed in terms of cr' as follows:

R 8 2

Note that, since the chart in question was based
on samples of 5, we must use the di factor for
samples of 5 rather than for samples of 2.

We know that the measurement variability of
Instrument 1 (in terms of <r') is about 0.7 unit.
See paragraph B-3.6. By the law of the addi
tion of standard deviations or variances, as
given on page 123, we have:

(Total Variability) =" = (Product Variability)''
"b (Measurement Variability)'

This can be solved to find the product variabil
ity, X.

(3.5)' = (x)' -h (.7)'
12.2 = (x)' + .5
(X) ' = 11.7
X = 3 . 4 u n i t s

Therefore, the standard deviation of the prod
uct is approximately 3.4 where the standard
deviation of Instrument 1 is approximately
0.7. The standard deviation of the instrument
is about Vs great as the standard deviation
of the product.

The measurement error can also be expressed
as "percentage of the total variance" as fol
l o w s :

(Measurement variability)' _ (.7)' ^
(Total variability)' (3.5)'

0.040, or 4% of the total variance.
This is sometimes spoken of as finding the
"components of variance."

In all cases involving error of measurement,
the observed distribution of product is the sta
tistical sum of the real distribution of product,
whatever that may be, and the distribution of
measurement error. I f the measurements are
precise, the distribution of measurement errors
will be narrow. If the measurements are ac
curate, the center of the distribution of
measurement errors will be zero.

The above discussion covers the effect of
measurement precision on the observed varia-
bility. It does not cover the effect of meas
urement accuracy on the observed distribution
center. Measurement accuracy is discussed on
pages 90-91.

B-3.9 Meaning of "measurement error."
Positional variability, drift, etc. vs.
the error of actual measurement

Before leaving Experiment II the engineer
should note that the "measurement error"
referred to above is really a combination of the
instrument error itself and the error of the
operator using the instrument. It woxild be
possible to carry the experiment one step
further by designing it in such a way as to
separate the operator error from the instru
ment error. The experiment would then be-
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come a "three-factor" experiment—product,
instrument and operator.

In the same way, there may be more than one
source of variability in the product itself. For
example, if the parts are tapered, we will ob
tain a dijBferent measurement from place to
place on the same part, and this will be in addi
tion to the normal variability from one part to
another. If the parts are out of round, there
will be a similar difference from place to place,
depending on the position or point where the
measurement is taken. Variability from posi
tion to position on the same piece is called
"positional variability." We can eliminate it
from the experiment by taking the repeat
measurements in exactly the original place.

Fig. 86. Positional variability.

If we wish to study the amount of taper, out-
of-round etc., as well as the error of measure
ment, we should take repeat measurements at
both ends or both sides, and compare the two
positions just as we would compare two
m e t h o d s o r m a c h i n e s .

If the product is one which can drift or
change from one measurement to the next (as in
certain electrical properties) or if the mere act
of measurement may change it (for example, by
causing distortion), it will not be possible to
obtain repeat Uxcasurements under the "same
essential conditions." In that case it is neces
sary to consider the drift or distortion as if it
were an additional variable—that is, we set up
a three, four or five factor experiment, as ex
plained on pages 91-101, instead of treating it
as a simple Error of Measurement study.

Positional variability, or variability due to
drift, distortion etc., may increase either the
apparent variability of the product or the ap
parent error of measurement.

B-3.10 Amount off data required ffor the
exper iment

In the preceding experiment the engineer
measured 50 parts. It is a general rule that
ê more measurements are available the moreinformation we will be able to get from the ex

periment. On the other hand, the major con
clusions from the experiment are likely to show
up with only a moderate amount of data.

It is also a rule that the amount of data re
quired for the experiment is governed by the
amount needed to obtain the necessary pre
cision in the estimate of variability.

If a good estimate of variability is already
available before the experiment is started (for
example, from process capability studies), or if
there is reason to believe that the variability is
not different in different parts of the experi
ment, then only a small amount of data will be
needed. Where the variability is not known in
advance, and especially where there is a possi
bility that there may be more variability in cer
tain portions of the experiment, considerably
more data will be needed.

B-3.11 Measurement accuracy
Experiment II was concerned with precision

of measurement rather than with measurement
accuracy. Precision refers to the reproducibil
ity of the measurements: that is, the ability of
the measurer or the measuring instrument to
repeat or duplicate readings. Accuracy on the
other hand refers to the absolute correctness of
the measurements as compared with some
known standard. The accuracy of measure
ment can be checked in either of two ways.

(1) Obtain a standard whose true value is
known or has been fixed by authority:
for example, a standard Jo-block, a line of
standard length or width etched in glass,
an oscillator of known frequency, etc.
Make a series of measurements on this
standard using the measurement tech
nique which is to be studied. Plot an J?
and R chart. As in Experiment II the R
chart will show the error or precision of
measurement. However, since all meas
urements have been obtained on the same
standard, the JC chart should stay in con
trol. The accuracy of measurement is
checked by comparing the centerline on the
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X chart with the known true value of the
s t a n d a r d .

(2) If no standard of the above type is avail
able it is necessary to have a method of
m e a s u r e m e n t w h i c h i s i t s e l f c o n s i d e r e d t o
be a standard. For example, a specific
test set, master gage or micrometer may
constitute the standard method of meas
urement. Check one or more pieces of
product repeatedly using the standard
method and plot an X and R chart.
Check the same unit or units of product re
peatedly using the method which is to be
studied, and plot a similar X and R chart.
The accuracy of the measurements is de-
termined^^by comparing the centerlines on
t h e t w o X c h a r t s .

The X chart for any one piece of prod
uct should stay in control.

In either of the above two methods, if lack of
control is indicated on the R chart or X chart,
check for assignable causes and eliminate them
before attempting to determine the measure
ment accuracy. In particular, observe the
basic rule which applies to all X and R charts:
Do not attempt to draw conclusions from an X
char t when the R char t is out o f cont ro l .

B - 3 . 1 2 O t h e r s t a t i s t i c a l m e t h o d s

Error of measurement data can be analyzed
by other statistical methods, including the
*'sum of squares" method of analysis of vari
ance. The control chart, however, has the
usual advantages of

(a) Simplicity.
(b) The R chart.
(c) A plotted pattern.

B - 4 E X P E R I M E N T I I I

(Four Factor Experiment)
B-4.1 Background

This is a more complicated experiment than
either Experiment I or Experiment II. It in
volves four different factors whose effects are to
be separated and studied. The background
for this experiment is as follows:

A certain shop is manufacturing a product

which has a relatively low yield. There
already are charts in the shop, and a number
of process capability studies have been made.
These studies indicate that one reason for low
yields is the fact that a certain parameter
tends to run at too low an average. If a
suitable way to raise the average could be
found, this would increase the yield.

Raising the average, however, is not a
simple problem. Many things have been
tried by the shop and engineers with no con
sistently good effects. There are many con
flicting opinions on what should be done to
produce the desired results. Among these
conflicting ideas are the following:

The design engineers reported good results
some time ago by using a special cleaning
procedure. The Western Electric engineers
have not been able to get similarly good re
sults. On the other hand, since the trouble
seems to be worse recently, they feel that it
may be related to the thickness of plating
on certain parts. (The plating was made
thinner a short time ago in connection with
certain other design changes.)

It is also possible that the trouble may be
due to Western's method of activation, since
this is different from the method used during
laboratory development. The shop has added
further confusion to the picture by claiming
that it is possible to improve the yields by
lengthening the drying period at a certain
stage in the process. The en^neers see no
reason to believe that drying should be a
factor, and at least one engineering experi
ment has indicated that longer drying may
m a k e m a t t e r s w o r s e .

In short, the results so far have been in
conclusive and in some cases contradictory.
A number of factors seem to be involved
here, which may or may not be important
individually and which may or may not be
i n t e r r e l a t e d w i t h e a c h o t h e r .

This situation calls for a special kind of De
signed Experiment, which will make it possible
to study several variables simultaneously.

B-4.2 Old style experiment (without
statistical design)

Originally, the engineers on this job made no
attempt to design the experiment statistically.
They tried to find answers to these problems
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by running "special lots" as follows:

(1) They held all conditions constant except
the method of cleaning. They processed
a certain number of units with special
cleaning and a similar number with ordi
nary cleaning. They then measured the
parameter in question and compared the
r e s u l t s .

They found that results were slightly in
favor of special cleaning.

(2) Having finished the first experiment,
they ran a second "special lot." They held
all conditions constant except the method
of activation. They processed a certain
number of units with the laboratory
method and a s imi la r number w i th the
Western Electr ic method. They then
measured the parameter in question and
compared the findings.

They found that the Western Electric
method gave slightly better results.

(3) In the same way, they held all conditions
constant except the plating thickness and
ran an experiment to determine the effect
o f t h i s f a c t o r .

They found that thicker plating ap
peared to give better results.

(4) Finally, they held all conditions constant
except the drying period and found that
there seemed to be very little difference be
tween the short and long drying.

(5) On the basis of the above results, they
decided to use in the process:

(a) Special cleaning.
(b) The Western Electric method of

a c t i v a t i o n .

(c) Thick plating.
(d) Short drying.

To arrive at these conclusions, the engi
neers had to process a large number of pieces of
product in each of four separate experiments.
This involved the wasting of many experimental
pieces as well as the expenditure of large
amounts of effort and time. Furthermore,
when they introduced the above combination
of variables into the process, they did not obtain
the anticipated good results. The process con
tinued to run with a low yield and it became
obvious that the experiment had not produced
t h e c o r r e c t a n s w e r s .

The engineers then designed an experiment
statistically with the results shown below.

B-4.3 Designed experiment
By proper planning or design of this experi

ment it was possible to study all four of the
above variables in a single experiment involving
only 16 pieces of product. First the variables
were labeled Al, A2, Bl, B2 and so forth as
shown in Figure 87. This is a "balanced block
design" in the form of a 4 x 4 square. The de
sign is arranged in such a way that half of the
squares are reserved for condition Al and the
other half for A2 (in this example, the left and
right halves of the design respectively). At
the same time, using some other method of
division, half of the squares are reserved for Bl
and half for B2 (in this example, the first and

M E A S U R E M E N T S O N A C E R T A I N
P A R A M E T E R O F A C E R T A I N P R O D U C T

B l B 2 ' B l B 2

D 1 \ 3 4 0 6

D 2 \ 0 5 - 1 4

\ D 1 \ 3 - 4 4 - 1

: D 2 5 0 3 2

Al—Original plating
A2—Thin p la t ing
B l—Labora to ry ac t i va t ion
B 2 — ^ W e s t e r n E l e c t r i c a c t i v a t i o n
Cl—Regular cleaning
(72—Special cleaning
D1—Short drying period
D2—Long drying period

Since we w ish to ra i se the va lue
of the measured parameter, we
will consider effects good if they
tend to result in higher values.

Fig. 87. Simple example of a Designed Experiment.
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third columns for Bl, the second and fourth
for B2). By dividing the space horizontally in
stead of vertically, it is possible to reserve half
of the squares for CI and 02 respectively, and
similarly for D1 and D2. This results in a com
pletely balanced statistical design with eight
squares reserved for each of the eight condi
tions to be studied. This completely balanced
design is called a "factorial design."

With this design each variable can be studied
separately if we wish, just as if the other vari
ables were not present. At the same time, it is
possible to study the variables in combination.
For example, the special cleaning may have a
certain effect when the plating is thin, and it
may have a totally different effect when com
bined with thicker plating. Effects like this,
which are due to a combination of variables, are
cal led " interact ions."

In the above design, it is possible to study
the following variables and combinations of
v a r i a b l e s :

A a l o n e
B a l o n e
C a l o n e
D a l o n e

A combined with B
A combined with C
A combined with E
B combined with C
B combined with D
C combined with D

A combined with various conditions
o f bo th B and C

A combined with various conditions
of both B and D

A combined with various conditions
of both C and D

B combined with various conditions
of both C and D, etc.

There will also be certain effects not attrib
utable to any combination of variables. These
additional (unidentified) effects are known as
" r e s i d u a l . "

In running the experiment, the engineers
processed one unit under the combination of
cond i t ions A lB lC lD l—that i s , us ing the
original plating thickness, the laboratory
method of activation, the regular cleaning
method and a short period of drying. They
measured the parameter in question on this

unit and recorded the result in the first box or
square. In the same way they processed
another unit under A1B2C1D1—that is, with
original plating, the Western method of activa
tion, regular cleaning and a short period of dry
ing—and recorded this in the second box. All
the other boxes in the experiment were filled in
similarly, using a random order for filling the
boxes as explained on pages 114-115.

The above example shows the minimum
amount of data which can be used to study four
variables at two levels each. If possible, more
than one unit should be processed for each box.

B-4.4 Method of analysis
A designed experiment of this type is

analyzed by the method known as "Analysis of
Variance." This method involves studying all
the variability (or "variance") found in the
data and partitioning it off into a number of
separate parts in such a way that it is possible
to distinguish the variability associated with
each variable or combination of variables in
the experiment.

There are two methods of performing the
"Analysis of Variance."

(1) Sum of squares method. This involves
rather complicated calculations, together
with the application of various statistical
tables. There are many articles on this in
the statistical literature.

(2) Control chart method. This accomplishes
the same results as the sum of squares
method, but does it by means of addition
and subtraction plus the plotting of one or
more control charts.

The following is a comparison between these
t w o m e t h o d s .

SUM OF SQUARES METHOD
The method of calculating the Sums of

Squares is shown in Figure 88.
The following notes relate to the numbered

c o l u m n s .

(1) In this column list (a) the individuals, (b)
the 4 main effects, (c) the 6 first order in
teractions, (d) the 4 second order interac
tions and (e) the residual. Each of these
is a possible source of variation.

9 3



Data for the Experiment Shown in Figure 87
n (the number of observations in the experiment) « 16
T (the grand total of all observations) = 33

(33)*C (the correction factor) = — = = 68. 0625

Source o f
V a r i a t i o n

N o . o f N o . o f
Ind. (i) Totals Numbers to Be Squared

S u m o f

Squares

I n d i v i d u a l s
3 - 4 4 - 1

A 8 2 1 6 1 7
B 8 2 1 7 1 6
C 8 2 2 1 1 2
D 8 2 15 1 8

A B 4 4 11 5 6 1 1
A C 4 4 12 4 9 8
A D 4 4 6 10 9 8
B C 4 4 2 19 15 - 3
B D 4 4 1 0 5 7 1 1
C D 4 4 13 8 2 1 0

A B C 2 8 3 8 9 - 4
A B D 2 8 6 0 4 5
A C D 2 8 7 6 5 3
B C D 2 8 3 1 0 - 1 9

5 5
3 - 1

0 3 2 3 3 1 8 3 . 0 0 0 0

3 3 5 4 5 . 0 0 0 0
3 3 5 4 5 . 0 0 0 0
3 3 5 8 5 . 0 0 0 0
3 3 5 4 9 . 0 0 0 0

3 3 3 0 3 . 0 0 0 0
3 3 3 0 5 . 0 0 0 0
3 3 2 8 1 . 0 0 0 0
3 3 5 9 9 . 0 0 0 0
3 3 2 9 5 . 0 0 0 0
3 3 3 3 7 . 0 0 0 0

7 1 0 1 3 3 3 2 1 . 0 0 0 0
5 2 6 3 3 1 6 7 . 0 0 0 0
3 5 5 3 3 1 7 9 . 0 0 0 0
5 8 2 3 3 3 3 3 . 0 0 0 0

Fig, 88. Sum of squares method: sheet for calculations.

(2) In this column list the number of in
dividual measurements in each level, or
combination, associated with the source
listed in column (1). For example, vari
able A has 8 measurements in each level.
Each of the A and B combinations (such as
AlBl) has 4 measiu*ements. Each of the
A, B, C combinations (such as AIBICI)
has 2 measurements, etc.

(3) In this coliunn list the number of levels,
or combinations, associated with each
source. The product of (2) and (3) should
in each case be equal to "n."

(4) In this column list the totals separately
for each level or combination. In the case
of individuals, list the individual observa
tions. In the case of variable A, list the
total of A1 and the total of A2. For the
combination AB list separately the totals of
AlBl, A1B2, A2B1 and A2B2. Similarly
for all other variables.

(5) In this column write the total of all the
numbers in column (4). In each case this
should be equal to the grand total of all the
d a t a .

(6) In this column write the total obtained
by squaring all the numbers in column (4)
and then adding the squares. For exam
ple, taking the source listed as "in
d i v i d u a l s " :

(3)2 + (4)2 + (0)2 + (6)2 + (0)2 + (5)2
-t- (~i)« + ay + ay + (-4)« + ay
- 1 - ( ~ i y + ( s y + ( o y + a y + ( 2 ) '
= 9 - fl 6 - t - 0 - f - 3 6 - f 0 - t - 2 5 + l - b
16-1-9+16-1-16+1 + 25-1-0-1-9 + 4
= 1 8 3

Carry out the same number of decimal
places as in the correction factor at the top of
the sheet.

For variable A:

(16)« + (17)» - 256 + 289 = 545.0000
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Sum of Squares Method {Continued)

Sou rce o f
V a r i a t i o n

I n d i v i d u a l s

S u m o f
Squares

4- i

6 8 . 1 2 5 0
6 8 . 1 2 5 0
7 3 . 1 2 5 0
6 8 . 6 2 5 0

7 5 . 7 5 0 0

7 6 . 2 5 0 0

7 0 . 2 5 0 0

1 4 9 . 7 5 0 0

7 3 . 7 5 0 0

8 4 . 2 5 0 0

1 6 0 . 5 0 0 0

8 3 . 5 0 0 0

8 9 . 5 0 0 0

1 6 6 . 5 0 0 0

Col. (7)
- C

1 8 3 . 0 0 0 0 1 1 4 . 9 3 7 5

8 1 . 6 8 7 5

1 6 . 1 8 7 5

9 2 . 4 3 7 5

1 5 . 4 3 7 5

2 1 . 4 3 7 5

9 8 . 4 3 7 5

S u b t r a c t
O t h e r C o r

r e c t i o n s

. 0 6 2 5

. 0 6 2 5
5 . 0 6 2 5

. 5 6 2 5

. 0 6 2 5
. 0 6 2 5

. 1 2 5 0

. 0 6 2 5
5 . 0 6 2 5

5 . J 2 5 0
. 0 6 2 5
. 5 6 2 5

. 6 2 5 0

. 0 6 2 5
5 . 0 6 2 5

5 . 1 2 5 0
• . 0 6 2 5

. 5 6 2 5

. 6 2 5 0
5 . 0 6 2 5

. 5 6 2 5

5 . 6 2 5 0

. 0 6 2 5

. 0 6 2 5
5 . 0 6 2 5
3 . 0 6 2 5
7 . 5 6 2 5

7 6 . 5 6 2 5

9 2 . 3 7 5 0
. 0 6 2 5
. 0 6 2 5
. 5 6 2 5

7 . 5 6 2 5
1 . 5 6 2 5
5 . 0 6 2 5

1 4 . 8 7 5 0
. 0 6 2 5

5 . 0 6 2 5
. 5 6 2 5

3 . 0 6 2 5
1 . 5 6 2 5

1 0 . 5 6 2 5
2 0 . 8 7 5 0

. 0 6 2 5
5 . 0 6 2 5

. 5 6 2 5
7 6 . 5 6 2 5

5 . 0 6 2 5
1 0 . 5 6 2 5

9 7 . 8 7 5 0

Residual = 114.9375 - 111.8750 = 3.0625

(10) (11) (12)

C o r r e c t e d
S u m o f M e a n
Squares d f Square

11 4 . 9 3 7 5 15 —

. 0 6 2 5 1 . 0 6 2 5

. 0 6 2 5 1 . 0 6 2 5
5 . 0 6 2 5 1 5 . 0 6 2 5

. 5 6 2 5 1 . 5 6 2 5

7 . 5 6 2 5

3 . 0 6 2 5

7 6 . 5 6 2 5

5 . 0 6 2 5

1 0 . 5 6 2 5

. 5 6 2 5

111 . 8 7 5 0

. 0 6 2 5 1 x 1 x 1

. 5 6 2 5 1 x 1 x 1

1 x 1 x 1

1 x 1 x 1

3 . 0 6 2 5

7 6 . 5 6 2 5

1 0 . 5 6 2 5

. 5 6 2 5

3 . 0 6 2 5

N o n e

Fig. 89. Sum of squares method: table of components of variance.



and similarly for all the other sources of
var ia t ion .

No Sum of Squares is calculated for the
residual.

The Sums of Squares must now be tested for
significance as shown in Figure 89.

The following notes relate to the .numbered
c o l u m n s .

(7) To obtain the values in this column
divide column (6) by column (2).

(8) For this column subtract the correction
factor C from column (7).

(9) In this column list any of the values
from column (10) which are associated
with the source of variation in question.
Leave column (9) blank in the case of in
dividuals, main effects, and residual. In
the case of the interaction AB, fill in the
column (10) values for A and B. In the
case of the interaction ABC, fill in the
column (10) values for A, B, C, AC, AB
and BC. Add these values to obtain the
total as indicated.

(10) To obtain the values in this column,
subtract the total in colunm (9) from
column (8).

(11) In this column list the number of de
grees of freedom. In the case of in
dividuals, the degrees of freedom are n —
1. For a main effect, the degrees of free
dom are the number of levels minus 1.
For a first order interaction, the degrees of
freedom will be the product of the degrees
of freedom associated with the two vari
ables involved. In the case of a second
order interaction, the degrees of freedom
will be the product of the degrees of free
dom for the three variables involved. The
number of degrees of freedom in the resid
ual will be the degrees of freedom for in
dividuals minus the total of all degrees of
freedom for the other sources of variation.

(12) To obtain the values in this column
divide column (10) by column (11). These
are "components of variance" for each of
the possible sources of variation.

(13) To find the significance of the different
sources of variation, use the "F-test" as
f o l l o w s :

F - t e e t :

Form various ratios consisting of
Mean Square to Be Tested

Res idua l

Start by testing the second order interac
tions. If these are found to be nonsignifi
cant, pool them with the residual, obtain a
new residual and use this to test the first
order interactions.

In testing the first order interactions,
start with the smallest. Pool those which
are nonsignificant to obtain various new
residuals, and proceed in this manner until
all the mean squares have been tested or
until one is found to be significant. When
a first order interaction is significant, do not
test the main effects associated with that
i n t e r a c t i o n .

The method of making an F-test is ex
plained in Reference No. 6. See also the
example in this book on page 79.

While the rules for pooling the residual will not
be given here in detail, the following calcula
tions will show how the pooling is done.
Pooled Residual

To test for BD:
5 . 0 6 2 5

1 . 3 4 8 2
Not significant.

Second Pooled
R e s i d u a l

3 . 0 6 2 5
. 5 6 2 5
. 5 6 2 5
. 5 6 2 5
. 0 6 2 5

3 . 0 6 2 5
1 . 5 6 2 5

7| 9.4375
1 . 3 4 8 2

= 3 . 7 6 a t d / 1 , 7

= 9 . 4 3 7 5 F o r m e r R e s i d u a l
5 .0625 BD

8| 14.5000
1 . 8 1 2 5

To t e s t f o r A B :

7 . 5 6 2 5

1 . 8 1 2 5

Not significant.

= 4 . 1 7 a t d / 1 , 8
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Th i rd Poo led
Residual = 1 4 . 5 0 0 0 F o r m e r R e s i d u a l

7 . 5 6 2 6 A B

9| 22.0625
2 . 4 5 1 4

To test for CD:

1 0 . 5 6 2 5

2 . 4 5 1 4
= 4 . 3 1 a t d f 1 , 9

Not significant. (Or "not quite significant.")

Four th Poo led
R e s i d u a l = 2 2 . 0 6 2 5

1 0 . 5 6 2 5

10| 32.6250
3 . 2 6 2 5

Former Residual
C D

To test for BC:

IS = 23.47 at d/1,10
Significant at 0.1% level.

For tables of the Variance Ratio and for a
detailed discussion of pooling, significance test
ing and other calculations involved in the Sum
of Squares method, see Reference No. 5, pages
77-97 and 146-149.

Effects which are found to be "significant at
the 5% level" are usually called merely "sig
nificant"; those at the 1% level "very sig
nificant"; and those at the 0.1% level "ex
tremely significant." Some workers identify
these with one, two and three asterisks respec
tively.

Conclusions from this analysis
The result of this analysis is that there is

something "extremely significant" about the
BC interaction. The Sum of Squares method
does not tell us just what combination is
significant, or how the B and C effects are re
lated to each other or to the other variables.
To obtain this information, it is necessary to go
back and study the original data.

C O N T R O L C H A R T M E T H O D

A large amount of information is available on
the use of control charts in analyzing multifac-
tor experiments. The control charts have the

general advantages of (a) simplicity and (b)
the information contained in patterns. The
control charts are usually much easier to under
stand and interpret than other forms of analy
sis. However, it is necessary to learn certain
new techniques in connection with (a) the cal
culation of control limits and (b) plotting the
d a t a .

The following material covers only that part
of the control chart analysis which is directly
comparable to the Sum of Squares method
shown above. Further information is available
in the advanced Engineering Courses on this
subject which are given from time to time in
the various manufacturing locations.

Basis of control chart analysis
When control charts are used in multifactor

experiments, it is customary to base the control
limits on the "Residual" rather than on a series
of sample ranges. This is the only essential
difference between this and other uses of con
trol charts. The Residual is the same value
which is obtained in the Sum of Squares
method, but in plotting the control chart it can
be obtained very rapidly. The following in
structions apply to a four factor experiment
with each factor at two levels.

(1) Visualize the boxes in the experiment as
shaded or unshaded according to the fol
lowing diagram.

B \ B 2 ' B l B 2

Fig. 90. Diagram for calculating residual: control
c h a r t m e t h o d .

(2) Add the numbers in the shaded squares,
subtract from these the numbers in the un
shaded squares, and divide by 4. In the
present example,

- + 1 . 7 .
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The absolute value of this Residual (disre
garding signs) is called v' and is used as the
basis for calculating control limits. Note that if
we take the square root of 3.0625 (the mean
square for the Residual which was obtained at
the end of the calculations in Figure 89) we ob
ta in th i s va lue o f 1 .75 .

For the control chart analysis, it is not neces
sary to make the other calculations which were
used in the Sum of Squares method. However,
if it is desired to reproduce all the other numeri
cal effects, this can be done as indicated under
the heading "Optional Calculations" below.

To obtain a value of K for use on the range
chart, first multiply <t' by the appropriate di
factor for the sample size to be used. In the
present example we would probably decide to
use samples of 2.

R = diX(T' = 1.128 X 1.75 = 1.97
Then use this value of R in the usual way to

obtain standard control limits. Complete
directions are given on pages 107-109.

Optional calculations
To reproduce the numerical effects obtained

in Figure 89, proceed as follows:

(1) Identify each box in the experiment as
shown in Figure 91.

(2) Calculate the numerical effects as shown
in Figure 92. "Res." stands for the alge-

A 1 A 2

Fig. 91. Identification of boxes in a four factor ex
periment.

braic value of Residual already calcu
lated (4-1.75). Add or subtract as indi
cated, using the values in the designated
boxes. For example:

A effect = 4-1.75 4- l/2(-3 4- 0- 5 4- 4-
( - 4 ) - 1 - 5 4 - 3 ) = 4 - . 2 5

Each of these values is the square root of
the corresponding value in Figure 89.

These calculations show that the largest
potential effect is the BC interaction. This in
formation is useful, but not essential, in plot
ting the control charts.

Method of plotting
The following procedure may be used in plot

ting the control charts.

Main Effects
Res. 4- Vs(-a l 4-a3-b2 4-b4-c2 4-
Res. 4- 'A(-al 4- a2 - b3 -1- b4 - c3 +
Res. 4- Vs(-al - a4 - b2 - b3 4- cl 4-
Res. 4- 'AC-al - a4 4- bl 4- b4 - c2 -

F i r s t Orde r In te rac t i ons

Res. 4- 'A(4-bl - b2 - b3 4- b4 4- cl -
Res. 4- Vs(4-a2 - a4 4- bl - b3 - c2 4-
Res. 4- V2(4-a2 - a4 - b2 4- b4 4- cl -
Res. 4- V!(4-a3 - a4 4- bl - b2 - c3 4-
Res. 4- V2(4-a3 - a4 - b3 4- b4 4- cl -
Res. 4- V2(4-a2 4- a3 - b2 - b3 - c2 -

Second Order In te rac t ions

Res. 4- 'AC-al 4- a2 4- a3 - a4 4- el -
Res. 4- V2(-al 4- a2 4- a3 - a4 4- bl -
Res. 4- 'Af-al 4- a3 4- bl - b3 4- cl -
Res. 4- 'AC-al 4- a2 4- bl - b2 4- cl -

c4 - dl 4- d3)
c4 - dl 4- d2)
c4 4- d2 4- d3)
c3 4- d2 4- d3)

- c2 - c3 4- c4)
4- c4 - dl 4- d3)
- c3 - d l 4- d3)
4- c4 - dl 4- d2')
- c2 - d l 4- d2)
- c3 4- d2 4- d3)

c2 — c3 4- c4)
b2 - b3 4- b4)
c3 - dl 4- d3)
c2 - dl 4- d2)

9 8

Fig. 92. "Effects" or components of variance: control chart method.



(1) Select two of the factors in the experiment
which you particularly wish to study.
These may be (a) factors in which you are
particularly interested for engineering
reasons, (b) factors which appear, in the
original data, to be associated with large
numerical effects, or (c) factors which
show the largest main effects or interac
tions when calculations are made as in
Figure 92. In the present example we
would select B and C.

(2) Look up these factors in the Plotting
Guide on page 109. The Guide will show
(a) the headings to put at the top of the
chart, (b) the identification to put at the

bottom of the chart and (c) the order in
which to plot the data. The order is
shown by the series of symbols

alblaSbS etc.,

each symbol referring to one of the ex
perimental boxes in Figure 91.

al bl a3 b3 cl dl c3 d3 a2 b2 a4 b4 c2 d2 c4 d4
A 1 A 1 A 2 A 2 A 1 A 1 A 2 A 2 A 1 A 1 A 2 A 2 A 1 A 1 A 2 A 2
D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2

Fig. 93. Plotting guide for factors B and C.

Measurements on a Certain Parameter of a Certain Product

3 sigma limit for X

1% level

+ 4 J \ \ 5 % l e v e l

c e n t e r l i n e

5% level

1% level

.3 sigma limit for X

3 sigma limit for IR

6% level

c e n t e r l i n e

A c r o s s A

D l D 2 D l D 2

Fig. 94. Control chart analysis: X and R chart. Three sets of limits are shown (1% and 5% levels in
addition to the 3 sigma limits).
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Directions for making this chart are given
on pages 107-109.

In plotting the control chart, it is customary
to show one or two sets of "inner control
limits" in addition to the standard 3(r limits
which are used on other control charts. These
inner control limits are explained on page 107.

To interpret the chart, first look at the
standard 3cr limits and mark x's in accordance
with the usual tests. The x's are interpreted as
in the case of any other control chart. Then
look at the inner control limits and mark any
significant points with an asterisk or a question
mark as explained on pages 107 and 109. The as
terisks and question marks are interpreted in
the same way as x's, except that we recognize
that the conclusions are less certain.

Drawing conclusions
The conclusions from the experiment are

usually obvious, once the chart has been plot
ted, since each point is completely identified
in terms of the variables being studied. How
ever, a detailed analysis of the present example
is given below to serve as a guide in interpreting
other experiments.

Detailed analysis of the chart in Figure 94
X chart

(1) Looking at the 3 <r control limits on this
chart, we note that one point is out of con
trol on the low side. A check of the head
ings at the top of the chart and the identi
fication at the bottom shows that the low
point is B2C2D1. Since we wish to avoid
low readings on the parameter being
studied (page 91), this means that we
should avoid the combination B2C2D1.

By checking the list of variables on page
92 we find that the combination to be
avoided is Western activation, special
cleaning, and short drying.

(2) Still looking at the 3 a limits, we note
that the four points at the top of this
chart react to a test for "4 out of 5." This
means that these four points are signifi
cantly higher than the rest of the data.
The desirable combinations are B1C2
(laboratory activation with special clean
ing) and B2C1 (Western method with
regular cleaning).

The above points, which react to the 3 a
limits, have been marked in the usual way
wi th x ' s .

(3) Looking now at the inner control limits,
which represent lesser degrees of certainty,
we note the following:

At the 1% level (that is, with less cer
tainty than if we were basing this on
3 a limits), the first point under B2C1
is significant. There is a little more
evidence of the desirability of B2C1
than there is of the desirability of
B 1 C 2 .

At the 5% level (that is, with less cer
tainty than if we were basing this on
the 1% limits), the point marked
BlClI)2 is significant. It may be
that, if we are already using the com
bination BlCl, longer drying will
m a k e m a t t e r s w o r s e .

R C h a r t

The J? chart was plotted in such a way as to
show the effect of variables B, C and D. The R
chart will show the effect of the remaining
variable, A. The R chart compares this vari
able (plating) directly with the Residual. The
Residual is represented by the centerline on the
R c h a r t .

Since none of the R points are significantly
different from the Residual, this indicates that
there is no significant effect due to plating. If
there had been a significant effect in some por
tion of the R chart (for example, in the portion
marked B1C2), this would have warned us
that there was an interaction between varia
bles A, B and C.

Summary
The conclusions from this experiment are

summarized as follows:

(1) It is desirable to use the Western Electric
method (B2) but only if it is to be followed
by regular cleaning (Cl).

(2) Very bad results may be obtained by
using the Western method in combination
with special cleaning (B2C2).

(3) If by any chance it should be necessary

1 0 0



to use the Western method with special
cleaning, at least we should try to make
the best of a bad situation by using longer
drying (D2).

(4) It does not matter whether we use thick
or thin plating.

(5) If we decided to adopt the laboratory
method (Bl), it would probably be necevS-
sary to use special cleaning.

(6) If we wished to use the laboratory
method without going to special cleaning,
it would probably not be advisable to use
prolonged drying.

B-4.5 Comments on this experiment
(1) The control chart explains the conflicting

ideas described on page 91. The design
engineers said that special cleaning was
better. This checks with one part of the
chart. The Western engineers did not
agree with this idea. This checks with
another part of the chart. The shop said
longer drying would improve the yield.
This is true—provided we are unfortunate
enough to be using the combination B2C2.
The engineers found just the opposite ef
fect with longer drying. This would be
true if they were using BlCl.

(2) The best combination of variables in this
process would be Western activation and
ordinary cleaning. Note that this was not
t h e c o n c l u s i o n r e a c h e d i n t h e n o n - s t a t i s t i
cal experimenting on page 92.

(3) As a result of this experiment, the vari
ables chosen for the process were:
a . W e s t e r n a c t i v a t i o n .
b. Ordinary cleaning.
c. Thin plating (desired for other reasons).
The drying time was not changed.
This combination improved the average
considerably, and helped to bring about a
significant increase in yield.

B - 4 . 6 G e n e r a l c o m m e n t

Before attempting to analyze an experiment
by the method shown above, study the "Direc
tions for Plotting" on pages 107-109 and the
material on "Drawing Conclusions" on pages
111 - 11 2 .

F o r f u r t h e r i n f o r m a t i o n o n t h e S u m o f

Squares method, see References No. 5, 15, 16,
17 and 41 . For fu r ther in fo rmat ion on the
Control Chart method, see References No. 7,
32, 33, 40 and 47.

B - 5 E X P L A N A T I O N O F T H E
F O U R F A C T O R A N A L Y S I S

(With Special Reference to the
Control Chart Method)

The following explanation is not essential for
the analysis, but will aid in understanding the
theory of the factorial design. The engineer is
asked to imagine a process which contains
initially no variation whatsoever. As the ex
ample proceeds, variables are deliberately in
troduced into this process in such a way that
their separate and combined effects can be
studied. This will help to show:

(a) The meaning of "balance" in a factorial
design.

(b) The fact that it is possible to study the
factors separately, even though many fac
tors have been combined in the same ex
periment.

(c) The meaning of "residual."
(d) The meaning of "interactions."
Because the example starts with zero varia

tion, it is easy to check the effects and also to
c r o s s - c h e c k t h e c a l c u l a t i o n s .

B-5.1 Explanation of '^factorial design''
Imagine a process which contains no varia

t ion whatsoever. A ser ies o f measurements
from this hypothetical process could be repre
sen ted as fo l l ows :

0 0 0 0

0 0 0 0

Fig. 95. Original measurements from a hypothetical
process containing zero variation.

When variables are introduced into an ex
periment on this process, they will tend to pro
duce changes in the original numbers. For
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example, suppose we introduce a change in a
certain alloying temperature, the effect of the
change being equivalent to adding 2 to each of
the basic measurements. To represent this,
divide the experiment vertically into two
halves, label the halves A1 and A2, and add 2 to
e a c h o f t h e A 2 m e a s u r e m e n t s a s s h o w n b e l o w.

Fig. 96. Introduction of Variable A: +2 added to all
A 2 m e a s u r e m e n t s .

A second variable could be introduced into
the same experiment as follows:

Suppose, in addition to alloying tempera
ture, we are interested in the effect of cur
ing in a bake-out oven overnight. Let the
effect of baking be equivalent to subtract
ing 6 from each of the original meas
urements. Introduce this second variable
into the experiment in the following way:
Let Bl represent the units processed with
out baking and B2 the units which have
been baked. Divide the experiment verti
cally into quarters. Label the first and
third quarters Bl and the second and fourth
quarters B2. Now subtract 6 from each of
the B2 measurements as shown below.
These measurements will contain the com
bined effect of variables A and B.

B l B 2 ' B l B 2

0 - 6 2 - 4

0 - 6 2 - 4

0 - 6 2 - 4

0 - 6 2 - 4

Fig. 97. Introduction of Variable B: -6 added to all
B 2 m e a s u r e m e n t s .

In the same way, let CI represent a certain

capacitance level and 02 another. The data
below would be obtained by adding 4 to each
of the 02 measurements:

B l B 2 ^^ B l B 2

0 - 6 2 - 4

0 - 6 2 - 4

4 - 2 6

4 - 2 6 0

Fig. 98. Introduction of Variable C: -f-4 added to all
0 2 m e a s u r e m e n t s .

Finally, let D1 represent a ''bright dip"
finish and D2 the regular finish. The data be
low would be obtained by subtracting 2 from
each of the D2 measurements:

B l B 2 '' B l
B 2

0 - 6 2 - 4

- 2 - 8 0 - 6

4 - 2 6 0

2 - 4 4 - 2

Fig. 99. Complicated data containing four different
v a r i a b l e s .

We now have a number of variables intro
duced into the same data. It would be diflScult
to tell, by looking at the numbers, just what
effect was contributed by each variable.

B-5.2 Method of separating the effects of
t h e v a r i a b l e s

To separate the effects of the different vari
ables, proceed as follows:

Starting with the complicated data in Figure
99, calculate the average for each level of each
variable and record these averages as shown in
Figure 100. The "Effect" of the variable is
the amount obtained by subtracting Level 1
from Level 2.

Note that these are the numbers which we
added to the data originally.

It would now be possible to "remove" the
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Va r i a b l e s

A 2 - A 1
B 2 - B 1
C 2 - C I
D 2 - D 1

Averages Main Effects
0 - ( - 2 ) = + 2

- 4 - ( + 2 ) = - 6
H - l - ( - 3 ) = + 4
- 2 - 0 = - 2

Fig. 100. Main effects.

effect of any variable from the data by subtract
ing the calculated difference in average from
each of its Level 2 measurements. For exam
ple, to remove the effect of Variable B, start
with the data in Figure 99 and subtract —6
from (or add +6 to) each of the B2 measure
m e n t s .

1

B l B 2 B l B 2

0 0 2 2

D 2 - 2 - 2 0 0

D 1 4 4 6 6

D 2 2 2 4 4

Fig. 101. Effect of removing Variable B.

To remove the effect of Variable C (in addi
tion to B) start with the data in Figure 101 and
subtract 4 from each of the C2 measurements.

f B l B 2 ^ B l B 2

D l 0 0 2 2

D 2 - 2 - 2 0 0

D l 0 0 2 2

D 2 - 2 - 2 0 0

Fig. 102. Effect of removing Variable C.

To remove the effect of Variable D (in addi
tion to B and C) start with the data in Figure
102 and subtract —2 f rom each of the D2
measurements. See Figure 103.

This uncovers the original simple effect of
Variable A, uncomplicated by any other vari
able. If we now removed Variable A also, in
the same manner, all the numbers would be re
duced to the original zeros.

1 B l B 2 ^ B l B 2

D l 0 0 2 2

D 2 0 0 2 2

D l 0 0 2 2

D 2 0 0 2 2

Fig. 103. Effect of removing Variable D: all variables
are now removed except A.

B-5.3 Meaning off ' 'Residual''

Suppose we had started, not with zeros, but
with other numbers such as 1,2 and 3. Assume
that these numbers are scattered more or less
uniformly through the experiment, in such a
way that the numbers in one portion of the ex
periment are about the same as the numbers in
other portions of the experiment. It would be
possible to introduce variables into this experi
ment just as we did before, then calculate the
e f f e c t o f e a c h v a r i a b l e a n d r e m o v e t h e s e
effects from the data. This time the numbers
would be reduced, not to zero, but to something
closely approximating the original I's, 2's and
3's.

In the same way, we could start with any set
of numbers (provided only they are imiformly
scattered) and reproduce these numbers more
or less closely by calculating and removing
e f fec t s .

In a real experiment we assume that we start
with random variation {uniformly scattered).
We add several variable s to this in conducting
the experiment. We calculate the effects of
these variables in the manner shown above.
When the effects are removed, we obtain an esti
mate of the original random variation.

The variability left in the numbers after the
k n o w n e f f e c t s a r e r e m o v e d i s c a l l e d t h e
"Residual." It is a measure of random varia
t i on . Some wr i t e r s re fe r t o t he Res idua l as t he
"experimental error."

If any of the identified variables in the ex
periment are significantly larger than the
Residual, this is statistical evidence that these
variables must have a real effect. If any of the
variables are not significantly larger than the
Residual, we conclude that their apparent ef
fects may be due to chance, or to ordinary ran
d o m fl u c t u a t i o n .
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B - 5 . 4 I n t e r a c t i o n s

When variables have a simple direct effect
like those introduced in paragraph B-5.1 (that
is, when we can represent the effect of A2 by
adding or subtracting a constant amount from
all the A2 measurements) such variables are
s a i d t o h a v e a ' ' m a i n e f f e c t . " W h e n t h e
effect of a variable is more complicated, it is
said to exhibit "interaction." A simple ex
ample of interaction would be the following:

In paragraph B-5.1 we introduced a cer
tain variable, B, representing the effect of
curing in a bake-out oven overnight. This
variable had a "main effect" indicated by
subtracting 6 from all B2 measurements.
Imagine now that the effect of baking is not
always the same. Suppose it normally
tends to increase the measurements by 6,
but if the material has already been proc
essed at alloying temperature A2, then
baking will reduce the measurements by an
amount equal to 12. We then say that
there is an "interaction" between Variable
B and Variable A.

Interaction is defined as the effect of one
variable acting on another. It can also be
defined as the effect produced by two vari
ables acting in combination where the effect
would not be produced by either variable
acting alone. These are two ways of saying
the same thing.

To represent the above interaction between
B and A, start with the hypothetical data in
Figure 95 and add 6 to all of the B2 measure
m e n t s . T h e n s u b t r a c t 1 2 f r o m t h e A 2 B 2
measurements only (those in the last column).
Then introduce the main effects of variables A,
C and D in the same manner as in paragraph
B - 5 . 1 .

1
B 1 B 2 ' B \ B 2

D 1 0 6 2 - 4

D 2 - 2 4 0 - 6

D 1 4 10 6 0

D 2 2 8 4 - 2

Fig. 104. Effect of introducing 3 main effects and one
i n t e r a c t i o n .

The results of this further complication of
the data are shown in Figure 104.

By working backward from Figure 104, the
numerical effect of the interaction can be dis
covered as follows. First find the averages of
all possible combinations of B and A. There
are four of these:

A l B l = + 1
A 1 B 2 = + 7
A 2 B 1 = + 3
A 2 B 2 = - 3

Then take the difference between the A1B2
average and the AlBl average:

A 1 B 2 - A l B l = 7 - 1 = 6

This is the effect of B, considering the A1 data
only.

Now take the difference between the A2B2
average and the A2B1 average:

A2B2 - A2B1 = (-3) - 3 = -6

This is the effect of B, considering the A2
data only.

Finally take the difference between these two
differences. This is the interaction.

(A2B2 - A2B1) - (A1B2 - AlBl) =
( -6 ) - 6 = - 12

T h i s s h o w s t h a t t h e A 2 B 2 m e a s u r e m e n t s
must have been reduced by 12.

The above expression is usually written as
f o l l o w s :

Interaction between A and B:
A 2 B 2 - A 2 B 1 - A 1 B 2 + A l B l
(-3) - (+3) - (+7) + (+1) = -12

In the same way, it would be possible to cal
culate the interactions between all other com
binations of variables. In the present example
we did not actually introduce any other inter
actions. Consequently these interactions
should all turn out to be zero.

B e t w e e n A a n d C :
A 2 C 2 - A 2 C 1 - A 1 C 2 + A l C l
(+2) - (-2) - (+6) + (+2) = 0

B e t w e e n A a n d D :
A 2 D 2 - A 2 D 1 - A 1 D 2 - f - A l D l
( - 1 ) - ( +1 ) - ( +3 ) + (+5 ) = 0
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B e t w e e n C a n d B :
C2B2 - C2B1 - C1B2 + ClBl
(+4) - (+4) - (0) + (0) = 0

Between C and D:
C2D2 - C2D1 - C1D2 + ClDl
(+3 ) - ( +6 ) - ( - 1 ) + (+1 ) = 0

Between D and B:
D 2 B 2 - D 2 B 1 - D 1 B 2 + D l B l
(+1) - (+1) - (+3) + (+3) = 0

B-5 .5 How to remove the e f f ec t
o f i n t e r a c t i o n s

To remove from the data the effect of an in
teraction, subtract the indicated amount from
the measurements which represent Level 2 for
both variables. For example, to remove the
AB interaction found above, subtract —12 from
(or add -1-12 to) the A2B2 measurements.

B-5.6 Correcting the ''main effects" by
t^ing account of interactions

WheEfihain effects were calculated in para
graph B-5.2, these were not complicated by
the presence of any interactions. If interac
tions are present, however, they will tend to
"throw off" or distort the corresponding main
effects. An example of this is the following:
Suppose we try to determine the main effect of
variable A in Figure 104. We find

A 2 - A 1 = 0 - 4 = - 4

This is the true main effect which we intro
duced into Variable A.

In the same way, corrected effects can be cal
culated for al l the other variables. This has
been done in Figure 105. Note that in all cases
we obtain the values which were originally in
t r o d u c e d .

Fig. 105. Corrected main effects for all four variables.

Since all of these effects are the true values
(those actually introduced), it would be possi
ble to subtract them all from the data and thus
get back to the original zeros. To do this, start
with Figure 104, subtract 2 from the Al2
measurements, 6 from the B2, 4 from the C2
and (—2) from the D2. Finally, subtract
(—12) from the A2B2 column. All the num
bers will now be reduced to zero.

In a real experiment, they would be reduced
to the Residual.

This is not the effect which we really intro
duced into variable A. The A2 average has
been changed by the presence of the interaction.

A simple additional calculation, however,
can easily remove this difficulty. Merely sub
tract from the A2 average one-half of any inter
actions involving A.

C o r r e c t e d " A " m a i n e f f e c t =

(th^ sum of any interactions
A O A t i n v o l v i n g A )

= - 4 + 6

= + 2

B-5.7 Higher order interactions
It is possible for the data to be complicated

by other interactions than the simple one shown
above. For example, it may take a combina
tion of three or more variables to produce a
certain effect on the process. Interactions in
volving more than two variables are called
''higher order interactions." First order inter
actions involve two variables, second order in
teractions involve three variables, third order
interactions involve four variables, etc. In a
four factor experiment it is possible to calculate
(a) Main Effects, (b) First Order interactions,
(c) Second Order interactions and (d) the
Third Order interaction involving all four fac
tors. While these calculations will not be given
in detail, the method is a simple extension of
the method already explained.
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Second Order interaction between A, B and
C = A 2 B 2 C 2 - A 2 B 1 C 2 + A 2 B 1 C 1 -
A2B2C1 + A1B1C2 - A1B2C2 - AIBICI +
A 1 B 2 C 1 .

Using the data in Figure 104, (—4) — (+6)
+ ( 0 ) - ( + 2 ) + ( + 8 ) - ( - 2 ) - ( + 2 )
+ (+4) = 0.

This shows that we did not introduce any
Second Order interaction ABC.

Third Order interaction between A, B,
C a n d D = A I B I C I D I - A 1 B 2 C 1 D 1 -
A2B1C1D1 + A2B2C1D1 - A1B1C1D2 +
A1B2C1D2 + A2B1C1D2 - A2B2C1D2 -
A1B1C2D1 + A1B2C2D1 + A2B1C2D1 -
A2B2C2D1 + A1B1C2D2 - A1B2C2D2 -
A 2 B 1 C 2 D 2 + A 2 B 2 C 2 D 2 .

Using the data in Figure 104, (0) — (+6) —
(+2) + (-4) - (-2) + (+4) + (0) - (-6)- (+4) + (+10) + (+6) - (0) + (+2)
- (+8) - (+4) + (-2) = 0.

This shows that we did not introduce any
Thi rd Order in teract ion ABCD.

As before, interactions would tend to com
plicate the other effects of the variables, but
this could be corrected by a simple calculation
similar to that in paragraph B-5.6. In each
case we would be able to find the real (cor
rected) effect of each variable; and if all these
effects were removed, the data would be reduced
to the original zeros.
B-S.8 How this can be used in anaiysis

If we actually went through all this, calculat
ing the effects and obtaining their true values,
we would be able to remove any effects from
the data at will and study the remainder. In
a four factor factorial experiment containing
only one measurement per box, we might
c h o o s e t o r e m o v e

All 4 Main Effects
All 6 First Order interactions
All 4 Second Order interactions

and leave only the Third Order interaction.
(We would not attempt to remove the Third
Order interaction because it would not be
possible to separate this from the Residual.)

The data from which all possible effects have
been removed are called the "fully reduced
d a t a " .

The reader would be able to verify, by calcu
lating the effects, correcting them and actually

removing them from the data, that
R for samples of 2 from the fully reduced data

would be ABCD/8*, and

<r for the same data would be R/2.

The calculated o- should be multiplied by y/n
(where n is the number of boxes in the experi
ment) to take care of the restrictions imposed
on the data in removing so many effects.

Residual = a X \/n = R/2 X •\/l6 =
ABCD/16 X Vie

= ABCD/4

This gives the same value of Residual that is
obtained in the Sum of Squares method. The
shaded boxes shown in Figure 90 are merely
a convenient way of calculating ABCD.

B-5.9 Other possibilities
In the control chart method it is not neces

sary to remove all the main effects and interac
tions in the manner shown above. It is possible
to remove any desired variables or combina
tions of variables and study the effect of this on
the remainder. This makes the control chart a
very flexible method.

Estimates of Residual will involve larger or
smaller numbers of degrees of freedom depend
ing on the number of effects that are removed.
The method shown above is the one which
corresponds directly to the Sum of Squares
method prior to the pooling of any effects with
t h e R e s i d u a l .

B-5.10 Summary off technical terms
(1) The '^characteristic to be plottetT' is the

characteristic which is actually measured
a n d w h o s e m e a s u r e m e n t s a r e r e c o r d e d i n
the boxes provided for data.

(2) A "factor*' is a variable which may or
may not have an effect on the characteris
tic to be plotted, but which has been se
lected as an object of study in the experi
ment. We run the experiment to dis
cover the possible effect of one or more
factors. An experiment containing four
variables is called a four-factor experi
m e n t .

♦ This will be true regardless of which variable is
"summed across". See page 107.

1 0 6



(3) A '*leveV' is a particular condition or state
of one of the factors being studied. The
d i f f e r e n t c o n d i t i o n s o r s t a t e s o f t h e s a m e
variable are cal led i ts different " levels."
For example, the variable C may appear in
the experiment at two levels, CI and 02.
The presence of a certain condition may be
considered one level, and its absence may
be considered another level.

(4) The **Residual in the experiment refers
to the basic data which existed (or might
have existed) in the process prior to the
introduction of any of the factors in the
experiment. The Residual is the estimated
variability in the original basic data. See
paragraphs B-5.3 and B-5.9.

(5) A "mam effect^* is a simple, direct, con
sistent effect on the characteristic being
plotted. For example, if changing from
Dl to D2 has a definite tendency to make
the measurements higher, regardless of
the presence or absence of other varia
bles, there is a D main effect.

(6) Sometimes variables do not have a par
ticular effect when acting alone, but pro
duce that effect only when acting in com
bination with other variables. Such vari
ables are said to exhibit ^ ' interactions^'
r a t h e r t h a n m a i n e f f e c t s . I n t e r a c t i o n s
were discussed in paragraphs B-5.4 to B-5.7.

(7) The different methods of forming samples
in an experiment are spoken of as "sum
ming across" variables. We say we are
"summing across" a variable when we in
clude, in the same sample, measurements
representing different conditions of the
same variable. For example, if the experi
ment covers conditions CI and C2, we are
summing across C when we include a 01
m e a s u r e m e n t a n d a 0 2 m e a s u r e m e n t i n
the same sample. Each different method
of forming samples from the boxes (hori
zontally, vertically, skipping one box, etc.)
may result in summing across a different
var iable.

B - 6 D I R E C T I O N S F O R
P L O T T I N G

control charts in simple factorial experiments.
The instructions include not only the calcula
tion of standard 3 a limits, but also the calcula
tion of "inner control limits" at various "sig
nificance levels." The significance of the inner
control limits is as follows. (All percentages are
based on a normal distribution.)

On the X chart:

3 sigma limits correspond to 0.1% level
(approx.)

2.33 sigma limits correspond to 1% level
(approx.)

1.65 sigma limits correspond to 5% level
(approx.)

On an R chart for samples of 2:
3 sigma limits correspond to 1% level

(approx.)
2 sigma limits correspond to 5% level

(approx.)

The inner control limits are used as follows:

(1) Points which react at the 5% level are
l e s s c e r t a i n t h a n t h o s e w h i c h r e a c t a t t h e

1% level (1 in 20 chances of being wrong
as compared with 1 in 100). In the same
way, points at the 1% level are less certain
than points at the 3 <t limits.

(2) Points which react to the 3 a limits are
marked with an "x" in the usual way.
Points which react at the 1% level are
marked with an asterisk (*) and points at
the 5% level with a question mark (?) to
distinguish them from points which react
to the standard 3 a limits.

B-6.1 Experiment with four factors, two
ieveis, one measurement per box

Preliminary calculations
(1) Calculate the Grand Average of all the

data (-?).
(2) Calculate the Residual. This can be

done by using the shaded boxes in Figure
9 0 .

(3) Take o-' as the absolute value of the
Residual, disregarding signs.

X and R chart for n = 2
The following are directions for plotting (1) Calculate the centerline for the R chart
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a s f o l l o w s :

^ = d2 X (T' = 1.128 (T'

(2) Calculate control limits for the R chart as
f o l l o w s :

Upper 3 sigma limit = 3.267 R (or 3.68
er').

Upper 1% hmit: The 1% limit in this
case is so close to 3 <r that no separ
ate 1% hmit is calculated.

Upper 5% limit = 2.51 R (or 2.83 a).
Lower con t ro l l im i t = 0 .

(3) Calculate control limits for the X chart
a s f o l l o w s :

Upper 3 sigma limit = X + 1.88 ^
(or + 2.12 (t').

Upper 1% limit = X + lAQ R
(or + 1.65 0-').

Upper 5% limit = X + 1.03 -R
(or + 1.16 a').
The lower control limits are obtained

similarly, except Jhat the quantities are
subtracted from X instead of being added
to i t .

(4) Plot the control chart as follows:
(a) Decide on two factors which you par

ticularly wish to study.
(b) Select the appropriate diagram from

page 109.
(c) Set up a control chart which shows, at

the top, the combination of variables
given at the top of the diagram.

(d) Before plotting the chart, consider
the two variables shown at the bottom
of the diagram. Decide which of these
variables is probably less important.
Strike out the Une of identification cor
responding to the less important variable.

Show at the bot tom of the cont ro l
chart the identification which remains.

(e) Finally, consider the row of symbols
at the center of the diagram. These
symbols refer to the boxes in the ex
periment, as shown in Figure 91. Each
sjnnbol can be translated into one of
the numbers in the original data.

If, in step (d), you struck out the last
line of identification, form samples by
taking these symbols (or numbers) in

successive pairs. That is, use the first
two numbers for the first sample, the
next two numbers for the second sample,
e t c .

But if, in step (d), you struck out the
next to the last line of identification,
form samples by taking the symbols
alternately. That is, use the first and
third numbers for the first sample; the
s e c o n d a n d f o u r t h n u m b e r s f o r t h e
second sample; the fifth and seventh
numbers for the third sample, etc.

(f) Calculate X and R for each sample in
the usual way, and plot these values on
the control chart.

Example
Consider the experiment shown in Figure 87

on page 92.

X = 2 . 0 6
( t ' = 1 . 7 5
R = 1.128 X 1.75 = 1.97

C o n t r o l l i m i t s f o r R c h a r t :

3.68 X 1.75 = 6.44 (3 sigma level)
2.83 X 1.75 = 4.95 (5% level)

Control limits for X chart:

2.06 ± (2.12 X 1.75) = 2.06 ± 3.71
(3 sigma level)

2.06 ± (1.65 X 1.75) = 2.06 =i= 2.89
(1% level)

2.06 ± (1.16 X 1.75) = 2.06 2.03
(5% level)

Points are plotted as follows. The steps are
lettered to correspond to the instructions given
a b o v e .

(a) We have previously decided that we
would hke to plot B and C.

(b) We therefore select Diagram No. 3.
(c) We set up a control chart in accordance

with this diagram as shown on page 99.
(d) The two variables at the bottom of the

diagram are A and D. Suppose we decide
we are least interested in A. Strike out
the upper line of identification, consisting
of A's, and show only the D's on the con
trol chart. See page 99.

(e) Since the next to the last line of identi
fication was eliminated, we must form
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samples by taking the data alternately.
The symbols in Diagram No. 3 are:

alblaSbS cldlcSdS a2b2a4b4 c2d2c4d4

Our samples will therefore be:

a l b l c l d l a 2 b 2 c 2 d 2
a 3 b 3 c 3 d 3 a 4 b 4 c 4 d 4

Note that this results in ''summing across
A"—that is, including in one sample an Al
measurement and an A2 measurement .
This will cause variable_A to appear in the
R chart but not in the X chart. Label the
R chart "Across A."

When we translate these symbols into
the data in Figure 87 we get the following:

3 0 3 5 4 5 - 4 0
0 - 1 4 3 6 4 - 1 2

These are the samples which will be plot
ted on the control chart.

(f) The X and R points for the above samples
a r e :

X 1 . 5 - 0 . 5 3 . 5 4 . 0 5 . 0 4 . 5 - 2 . 5 1 . 0
f f 3 1 1 2 2 1 3 2

These are the points which are plotted
on page 99.

Marking x's and other significant points
In looking at these charts, consider first the

3 <T limits. Apply the standard tests for un
natural patterns and mark any significant point
with an "x". See pages 182-183.

Next, consider the 1% and 5% hmits. Do
not apply the tests for "2 out of 3" or "4 out of
5", but consider it significant if

(a) a single point exceeds the limit in ques
tion, or

(b) the average of two related points would
be more than ^/lo of the distance from the
centerline to the limit in question.

Rule (b) is derived from the fact that, if we
plotted the averages of samples having twice as
much data, the control limits applying to these
averages would have their width divided by
v ^ .

= approximately .7
V 2

Use asterisks or question marks for these
special significant points as indicated on page
107.

Guide for plotting
The diagrams referred to in the preceding in

structions are shown at the bottom of this page.
The symbols in the center refer to boxes, as
in Figure 91 on page 98.

Diagram 1. A and C. Diagram 2. B and D.

C l 0 2 0 1 0 2

al bl a2 b2 cl dl c2 d2 a3 b3 a4 b4 c3 d3 c4 d4
B 1 B 1 B 2 B 2 B 1 B 1 B 2 B 2 B 1 B 1 B 2 B 2 B 1 B 1 B 2 B 2
D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2

Diagram 3. B and 0.

al cl a3 c3

A 1 A 1 A 2 A 2
0 1 0 2 0 1 0 2

b l d l b 3 d 3

A 1 A 1 A 2 A 2
0 1 0 2 0 1 0 2

a2 c2 a4 c4

A 1 A 1 A 2 A 2
0 1 0 2 0 1 0 2

Diagram 4. A and D.

b 2 d 2 b 4 d 4

A 1 A 1 A 2 A 2
0 1 0 2 0 1 0 2

al bl a3 b3 cl dl c3 d3 a2 b2 a4 b4 c2 d2 c4 d4
A 1 A 1 A 2 A 2 A 1 A 1 A 2 A 2 A 1 A 1 A 2 A 2 A 1 A 1 A 2 A 2
D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2 D 1 D 2

Diagram 5. A and B.

a l c l a 2 c 2 b l d l b 2 d 2 a 3 c 3 a 4 c 4 b 3 d 3 b 4 d 4
B1B1B2B2 B1B1B2B2 B1B1B2B2 B1B1B2B2
01020102 01020102 01020102 01020102

Diagram 6. 0 and D.

al bl cl dl a2 b2 c2 d2 a3 b3 c3 d3 a4 b4 c4 d4 al a2 a3 a4 blb2b3 b4 cl c2 c3 c4 dl d2d3 ri4
01010202 01010202 01010202 01010202 A1A1A2A2 A1A1A2A2 A1A1A2A2 A1A1A2A2
D1D2D1D2 D1D2D1D2 D1D2D1D2 D1D2D1D2 B1B2B1B2 B1B2B1B2 B1B2B1B2 B1B2B1B2
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B-6.2 Experiment with three factors, each
factor at two levels, one measure
ment per box

Obtain the Residual as follows. Visualize
the boxes in the experiment as shaded or un
shaded according to the diagram shown below.

. 4 1 A 2
A A^ B 1 B 2 ^ B 1 B 2 ^

B-6.4 Experiments containing factors at
more than two leve ls

When one of the factors in an experiment
occurs at more than two levels, the experiment
becomes, in effect, a combination of simpler
experiments. For example, we might have an
experiment containing three factors (A, B and
C) with factor A occurring at three levels
instead of two. This experiment can be re
garded as a combination of three experiments
—one comparing Al w ith A2, another compar
ing A2 with A3, and a third comparing Al
with A3. The separate (simple) experiments
are shown in Figure 108.

While 24 boxes are shown in Figure 108, it
would only be necessary to obtain a total of
12 measurements. The four Al measurements
are entered first in section 1 and then copied
for use in section 2. The same is done for
A2 and A3.

This type of experiment may be analyzed
in separate sections, if desired, following the
method in paragraph B-6.2. It is also possible
to calculate a "combinat ion" Residua] which
can then be used for all three sections. The
method is as follows:

C l

0 2

Fig. 106. Calculating residual for a three factor
experiment.

Add the numbers in the shaded squares, sub
tract from these the numbers in the unshaded
squares, and divide the result by \/8.

Use this in the standard manner to obtain
control limits. Follow the general method used
for the Four Factor experiment as given on
pages 107-109.

B-6.3 Experiment with five factors, each
factor at two levels, one
measurement per box

Obtnin the Residual as follows. Visualize the
boxes in the experiment as shaded or unshaded
according to the diagram shown in Figure 107.

Add the numbers in the shaded squares, sub
tract from these the numbers in the unshaded
squares and divide the result by \/32.

Use this in the standard manner to obtain
control limits. Follow the general method used
for the Four Factor experiment as given on
pages 107-109.

(1) For each section, add the numbers in
the shaded squares and subtract from these
the numbers in the unshaded squares.
Square the result and divide by 8.

(2) Average the values obtained in (1) and
take the square root of the average.

This gives the same value of Residual which
w o u l d h a v e b e e n o b t a i n e d i n t h e S u m o f
Squares method. There are other shortcuts for
multi-level experiments, but these are beyond
the scope of the present Handbook.
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B-6.5 Experiments containing more than
one measurement per box

The foregoing instructions were for experi
ments which have only one measurement per
box. If more than one measurement is avail
able for each box, the instructions are similar,
except that it may be possible to use some other
method of finding the Residual. In general, the
data may be treated in three different ways, as
follows. Before deciding on the appropriate
treatment, use a control chart to test for the
presence of assignable causes within boxes. If
there are no assignable causes within boxes, use
methods (1), (2) or (3). If assignable causes
are found within boxes, use method (2) or (3)
but not method (1).

(1) Using the average of the measurements in
eaeh box.

In this treatment, consider the average of
each box as if it were a single measurement,
and analyze the experiment in the same
way as when there is one measurement per
box . I t i s des i rab le to have the same
number of measurements in each box. In
drawing conclusions, remember that these
are averages and that the conclusions will
apply to averages also.

(2) Forming samples within each box.
In this treatment, use the measurements

within a single box to form one or more
"samples." Calculate X and R for each
sample in the usual way. Add the values
of R for all samples in the experiment and
c a l c u l a t e R , U s e t h i s v a l u e o f R a s i f i t
we re the R ob ta ined f rom the Res idua l .

(3) Treating the measurements as a separate
factor in the experiment.

In this treatment, identify the sets of
measurements as Ml, M2 etc., and treat
"M" as an additional factor in the experi
ment. For example, if this is a four factor

experiment containing variables A, B, 0
and D, treat it as a five factor experiment
containing variables A, B, C. D and M.
In some cases there may be more variabil
ity from measurement to measurement
than there is between boxes.

B - 7 D R A W I N G C O N C L U S I O N S
F R O M E X P E R I M E N T A L
C O N T R O L C H A R T S

B-7.1 Preliminary anaiysis
Contrary to the expectation of many engi

neers, experimental charts are easy to interpret
once they have been plotted. The patterns
are marked with x's as in the case of any control
chart. They are classified as stratification,
mixture, freaks, sudden shift etc. as in any
process capability study. The tracing of causes
is generally simpler on the experimental charts,
since changes in the pattern can be associated
immediately with the particular variables in
cluded in the experiment. The interpretation
is simplest when the analysis includes only one
c h a r t .

If a number of charts have been plotted, or a
number of experiments have been run, it is
sometimes helpful to combine the conclusions
and reduce them to their simplest form. One
method of doing this is the following.

(1) Considei ing each chart as a whole, read
the patterns as in any process capability
study.

(2) As each conclusion is reached, record it
on a suitable form as shown in Figure 109.
This form may contain the conclusions
from an entire group of control charts.

(3) When duplicate conclusions are obtained,
as shown by duplicate entries in the same
column, strike out one of the duplicates so
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as to keep the outstanding conclusions in
as simple a form as possible. See Figure
109.

M O R E L E S S
H I G H L O W U N I F O R M U N I F O R M

A 1 D 2 A 2 D 2 c I C 2
A I B I C I
A 1 B 1 C 2

Fig. 109. Form for recording significant effects found
o n c o n t r o l c h a r t s .

(4) If, in a single column, entries occur which
are identical, except that they contain all
possible levels of one of the variables,
s t r i k e o u t t h e v a r i a b l e w h i c h o c c u r s a t a l l
levels. Afterward, since this will leave
duplicates in the same column, strike out
all but one of the duplicates so as to leave
the simplest possible conclusions.

This can be illustrated by an example.
Suppose we have the following entries,
all in the same column:

A 1 D 2
A l B l C l
A 1 B 1 C 2
A 1 D 2

F i r s t s t r i k e o u t o n e o f t h e ' ' A 1 D 2 " e n

tries, since this is a duplicate. This
leaves :

A 1 D 2
A l B l C I
A 1 B 1 C 2

In two of the entries which are otherwise
identical (AlBlCl and A1B1C2), the vari
able C occurs at all possible levels. Since
we find the same effect at all levels of C, it
i s o b v i o u s t h a t t h i s e f f e c t m u s t b e d u e t o
other variables and not C. Strike out CI
a n d 0 2 . T h i s l e a v e s :

A 1 D 2
A l B l
A l B l

Since we now have duplicates in the
same column (two entries of AlBl), one
of the duplicates should be eliminated.
T h i s l e a v e s :

A 1 D 2
A l B l

These are the conclusions reduced to
their simplest possible form.

(5) After the analysis is completed and all
conclusions have been noted and reduced
to their simplest form, express the conclu
sions verbally in terms of the real vari
ables. Check the conclusions by referring
back to the plotted charts. Be sure you
are fully aware of the evidence on which
these conclusions are based.

B - 7 . 2 F i n a l c o n c l u s i o n s
All experiments of the type discussed here

involve minimum amounts of data. They
should be used as a means of obtaining quick
indications of the best avenues to explore
f u r t h e r . Va r i a b l e s t h a t a r e f o u n d t o b e
significant in the experiment are probably im
portant variables. They can be used to im
prove the process, reduce costs or explain ef
fects that were previously baffling and unex-
plainable.

On the other hand, variables which do not
show up as significant in the experiment are
not necessarily unimportant. The amounts of
data used in designed experiments may be suf
ficient to establish certain variables as sig
nificant, but it requires much larger amounts of
data to establish the absence of significance.
This is true whether the experiment is analyzed
by control charts or by any other method.

In any case the engineer should design his
experiments on the basis of previous process
capability studies, and should check all con
clusions from his experiments by making other
process capability studies. He should guard
against the temptation to substitute conclu
sions from this quick type of experiment for
the broader and more reliable analysis of the
process which is included in a process capability
study.

B - 8 S O M E S U G G E S T I O N S O N
P L A N N I N G T H E
E X P E R I M E N T

B-8.1 The problem
Define the problem as specifically as possible

before starting the experiment. Consult others
who have expert knowledge of this job or of the

1 1 2



planning of designed experiments. During the
planning, decide whether to measure one or
several characteristics on the experimental
units. By measuring the units for a number of
characteristics, it is often possible to select an
optimum set of variables considering their
effect on all characteristics simultaneously. If
the problem is complicated, attempt to sub
d i v i d e i t a n d h a n d l e t h e s u b d i v i s i o n s i n
dividually.

B-8.2 Type and quantity of data
The characteristics studied may be "vari

able" in nature (that is, capable of measure
ment along a continuous scale) or they may be
discrete or non-variable in nature (that is,
capable of being classified into limited cate
gories only). Characteristics of the latter type
inc lude those wh ich are measured w i th a t
tributes gages on a go, no-go basis and those
which are indicated only by the presence or ab
sence of a given condition (for example, the
units did or did not crack, did or did not fail on
a life test, etc).

There is also a third type of characteristic
which is intermediate between the continuously
variable and the entirely discrete. These are
the characteristics which are ordinarily con
sidered discrete in nature but which can never
theless be measured on some sort of crude
"semi-var iab les" sca le . Such charac ter is t ics
may include cracks, burrs, extent of warpage or
damage, depth of nicks or scratches and many
other characteristics for which it is possible to
distinguish degrees if not actual measure
m e n t s .

If the characteristic is measurable on a con
tinuous scale, it may be necessary to process
only one unit for each "box" in the table of ex
perimental results. If the characteristic is
non-measurable, it will be necessary to produce
a number of units under each designated set of
conditions and record in the box the percentage
or co imt wh ich d id o r d id no t con ta in the
characteristic in question. The number of
units to be processed for each box depends on
how many are needed to obtain usable counts
or percentages. The number in each group
should be large enough so that most of the boxes
in the table will contain a number other than
zero. It is desirable to process the same num
ber of units for each box.

Attributes data may be analyzed with p-
charts or c-charts, as explained in Reference
No. 32; or it is possible to use an X and R chart
as explained on page 198._̂  Most engineers find
it convenient to use the X and R chart, follow
ing the same procedures for both variables and
attributes data.

Unless there is good reason for doing other
wise, the experiment should not be reduced to
fewer than a total of sixteen observations.
This is necessary to permit reasonable esti
mates of the residual or experimental error.
Better estimates of residual may be obtained if
the experiment provides more than one observa
tion per box.

Occasionally it is convenient to process more
units than will be needed for the experiment
and select the experimental units at random
from the larger group. In this event, use
dice, shuflBed cards or a table of random num
bers as the basis for selecting the units, in order
to avoid unconscious bias in making the selec
t i o n .

B-8.3 Reliability of measurements
The person conducting the experiment should

take special precautions to make sure that the
measurements are reliable. In many process
capability studies the initial measurements
show erratic and unexplainable patterns, par
ticularly on the R chart. These are likely to
reflect problems in measurement at least as
often as they reflect difficulties in the product.

In a designed experiment, measurement
peculiarities are even more important because
the amount of data is very small and all con
clusions are based on a few measurements ob
tained in a brief period of time. If practice is
necessary in using the measuring instrument (or
using the standard adopted as a basis for classi
fication), this should be carried out prior to the
time when the experimental data are collected.
In particular, make certain that the standards
of measurement are not allowed to change dur
ing the experiment. If gages and test sets must
be replaced, re-calibrated or overhauled, start
again to collect the experimental data.

B-8 .4 Se lec t ion o f var iab les

In designing the experiment, make a list of
all variables which are suspected of being able
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